
SANDIA REPORT
Printed May 14, 2023

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Sierra/SD – User’s Manual – 5.14
Sierra Structural Dynamics Development Team

SAND2023-03603

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the
United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
Sierra/SD provides a massively parallel implementation of structural dynamics finite
element analysis, required for high-fidelity, validated models used in modal, vibration,
static and shock analysis of weapons systems. This document provides a user’s guide to the
input for Sierra/SD. Details of input specifications for the different solution types, output
options, element types and parameters are included. The appendices contain detailed
examples, and instructions for running the software on parallel platforms.

3

This page intentionally left blank.

4

CONTENTS

1. Release Notes . 3
1.1. Feature deprecation procedure . 3
1.2. Release 5.14 . 4
1.3. Release 5.12 . 5
1.4. Release 5.10 . 7
1.5. Release 5.8 . 8
1.6. Release 5.6 . 9
1.7. Release 5.4 . 11
1.8. Release 5.2 . 12
1.9. Release 5.00 . 15
1.10. Release 4.58 . 18

2. How to Run Sierra/SD . 21
2.1. Accessing Sierra/SD . 21
2.2. Modules and Executables . 21
2.3. The Sierra/SD salinas Executable . 22
2.4. MPI Parallel Execution . 23

2.4.1. Number of MPI Processes Needed . 23
2.4.2. Mesh Decomposition . 24
2.4.3. Running the Sierra/SD Executable in Parallel 25
2.4.4. Post Processing in Parallel . 25

2.5. File system concerns . 25
2.6. Workflow Examples . 26
2.7. Thread Parallelism . 27
2.8. Troubleshooting . 28

2.8.1. Stand-Alone Tools . 28
2.8.2. Using Sierra/SD To Troubleshoot . 29
2.8.3. Modal Analysis . 30
2.8.4. Evaluating Memory Use . 30
2.8.5. Identifying Problematic Subdomains . 30
2.8.6. Limitations of SD Finite Elements . 30
2.8.7. Problematic Elements and Connectivity 31

2.9. Over-determined Constraints and Loss of Rigid Body Modes 32
3. General Commands . 34

3.1. Input deck format . 34
3.2. Input Mesh Geometry File . 37

3.2.1. Geometry_file . 37
3.2.2. Exodus Database Naming Conventions 38

i

3.2.3. ASSEMBLY section . 39
3.2.4. Exodus Naming Limitations . 39
3.2.5. Additional Comments About Output . 40

3.3. Parameters . 41
3.4. Solution Options . 52

3.4.1. Flush . 53
3.4.2. Restart . 53
3.4.3. Solver . 61
3.4.4. Lumped – option . 62
3.4.5. Constraintmethod – option . 63
3.4.6. Scattering – option . 63

3.5. GDSW . 63
3.5.1. Options . 70
3.5.2. Diagnostics . 71
3.5.3. Troubleshooting . 73
3.5.4. Mathematical Conditioning Issues . 77
3.5.5. Frequency Response Functions . 78
3.5.6. Parameters . 78

3.6. Sensitivity . 82
3.6.1. Attune . 83

3.7. Coordinate . 87
3.8. Function . 96

3.8.1. Function Offset/Shifts . 96
3.8.2. Linear Functions . 97
3.8.3. Sierra SM Piecewise Linear Functions . 99
3.8.4. Functions using Tables . 99
3.8.5. Polynomials . 100
3.8.6. LogLog Functions . 100
3.8.7. SamplingRandom . 101
3.8.8. RandomLib Functions . 102
3.8.9. Analytic Functions . 104
3.8.10. Plane Wave (Time Domain) . 112
3.8.11. Plane Wave (Frequency Domain) . 113
3.8.12. Planar Step Wave . 115
3.8.13. Spherically Spreading Wave . 115
3.8.14. Undex Structural Acoustic Loads . 117
3.8.15. Fluid Structure Interaction . 119
3.8.16. Blending . 120
3.8.17. Matrix-function . 123
3.8.18. Alternate Table Interface . 124
3.8.19. Table . 125

3.9. Multipoint Constraints . 127
4. Solution cases . 130

4.1. Defining Solution Cases . 131

ii

4.2. Multicase Solutions . 132
4.2.1. Multicase Options . 133
4.2.2. Multicase Example . 133

4.3. CJdamp Solution Case . 134
4.4. Craig-Bampton reduction Solution Case . 136

4.4.1. CBModel . 139
4.4.2. Sensitivity Analysis . 144

4.5. preddam Solution Case . 145
4.5.1. Eigen analysis notes . 146

4.6. DDAM Solution Case . 146
4.7. DirectFRF Solution Case . 149

4.7.1. Padé Expansion . 150
4.8. Model_Check Solution Case . 150
4.9. Eigen Solution Case . 151

4.9.1. Option nmodes . 151
4.9.2. Solving Singular Systems with Shifts . 152

4.10. AEigen Solution Case . 156
4.11. Largest_Ev Solution Case . 157
4.12. Fatigue Solution Case . 158
4.13. Buckling Solution Case . 161
4.14. ModalFilter Solution Case . 163
4.15. Modal Participation Factor Solution Case . 165
4.16. ModalFrf Solution Case . 168
4.17. ModalRanVib Solution Case . 173
4.18. ModalShock Solution Case . 178
4.19. ModalTransient Solution Case . 179
4.20. QEVP Solution Case . 181

4.20.1. Anasazi . 183
4.20.2. Damped Eigenvalue Problems . 184
4.20.3. SA_eigen . 186
4.20.4. Projection_eigen . 189

4.21. NLStatics Solution Case . 190
4.22. NLTransient Solution Case . 192
4.23. Random Vibration Solution Case . 193
4.24. Receive_Sierra_Data Solution Case . 194

4.24.1. Receiving SM User Defined Data . 196
4.25. Statics Solution Case . 201
4.26. Superposition Solution Case . 201
4.27. Tangent Solution Case . 203
4.28. TranShock Solution Case . 204
4.29. Transient Solution Case . 206

4.29.1. nUpdateConstraints Option . 208
4.30. TSR_preload Solution Case . 210
4.31. Residual Vectors Solution Case . 212
4.32. GeometricRigidBodyModes Solution Case . 214

iii

4.33. Waterline Solution Case . 216
4.34. Gap Removal Solution Case . 220
4.35. Inverse Problems . 221

5. Materials . 224
5.1. Elastic . 224

5.1.1. Isotropic . 224
5.1.2. Orthotropic . 225
5.1.3. Anisotropic . 226
5.1.4. Lamé Material . 227

5.2. Acoustic . 228
5.3. Linear Viscoelastic . 229

5.3.1. Limitations of Viscoelastic Use . 232
5.3.2. Complex Viscoelastic . 232

5.4. Properties . 233
5.4.1. Density . 233
5.4.2. High Cycle Fatigue . 233
5.4.3. S-N curve Definitions . 234
5.4.4. S-N Curve Units . 235
5.4.5. Typical Material Data for Fatigue . 236
5.4.6. Temperature dependence . 238
5.4.7. Spatially Variant Material Properties . 239
5.4.8. Specific Heat . 240
5.4.9. Frequency dependence . 241

5.5. Piezoelectric Material . 242
5.6. Dielectric Material . 243
5.7. Block . 244

5.7.1. Block Parameters . 244
5.7.2. General Block Parameters . 247

5.8. Damping . 251
5.8.1. Nonlinear transient solutions with damping 254
5.8.2. Nonlinear Distributed Damping . 254

6. Elements . 257
6.1. Hex8 . 257
6.2. Hex20 . 258
6.3. Wedge6 . 258
6.4. Wedge15 . 258
6.5. Tet4 . 259
6.6. Tet10 . 259
6.7. Two-Dimensional Shell and Membrane Elements . 259

6.7.1. QuadT, Quad8T, and Tria6 . 259
6.7.2. QuadM . 261
6.7.3. Nquad/Ntria . 263
6.7.4. TriaShell . 265
6.7.5. Tria3 . 265
6.7.6. Stiffness Scaling . 266

iv

6.7.7. Shell Coordinate Systems . 266
6.7.8. Layered Shells . 268
6.7.9. Offset Shells . 270
6.7.10. Spatially Dependent Properties via Exodus Attributes 271

6.8. HexShell . 272
6.9. Beam2 . 276
6.10. Nbeam . 280
6.11. TiBeam . 284
6.12. Truss . 284
6.13. Ftruss . 284
6.14. ConMass . 285
6.15. Spring . 287

6.15.1. Spring Parameter Values . 287
6.16. RSpring . 288
6.17. Spring3 - nonlinear cubic spring . 289
6.18. Dashpot . 290
6.19. SpringDashpot . 291
6.20. Hys . 292
6.21. Joint2G . 294

6.21.1. Specification . 294
6.21.2. Constitutive Behavior . 295

6.22. Line Weld . 303
6.23. Gap element . 306
6.24. Gap2D . 309
6.25. GasDmp . 310
6.26. Nmount . 311
6.27. Rrod . 314
6.28. Rbar . 314

6.28.1. Interaction of Rbars . 315
6.29. RBE2 . 315
6.30. RBE3 . 316
6.31. Superelement . 318
6.32. Dead . 323
6.33. Compatibility of SD/SM Elements . 324
6.34. Rigidset . 324
6.35. Rrodset . 326
6.36. Tied Joint . 327

7. Boundary Conditions and Initial Conditions . 334
7.1. Boundary conditions . 334

7.1.1. Prescribed Displacements and Pressures 337
7.1.2. Prescribed Voltage . 338
7.1.3. Prescribed Accelerations . 339
7.1.4. Prescribed Displacement in Transient . 340
7.1.5. Prescribed Frequency-Varying Displacements 340
7.1.6. Node_List_File . 341

v

7.1.7. Nonreflecting Boundaries . 341
7.1.8. Impedance Boundary Conditions . 342
7.1.9. Slosh . 343
7.1.10. Infinite Elements . 343
7.1.11. Perfectly Matched Layers . 346
7.1.12. Periodic Boundary Conditions . 348
7.1.13. Usage Guidelines . 349

7.2. Exodus Mesh Boundary Condition Input . 350
7.2.1. SpatialBC Functions . 351
7.2.2. Input an Acoustic Point Source from a Volume 352
7.2.3. Input an Acoustic Point Source from a Node Set 353
7.2.4. ReadSurface functions . 353
7.2.5. ExodusRead functions . 354
7.2.6. In Core Transfer Functions . 355

7.3. Loads . 356
7.3.1. Load . 357
7.3.2. Scale Factors for the Load . 358
7.3.3. Sideset Loading . 358
7.3.4. Spatial Variation . 361
7.3.5. Required Section . 361
7.3.6. Follower Stiffness . 361
7.3.7. Acoustic Loads . 361
7.3.8. Thermal Loads . 364
7.3.9. Energy Deposition Input and Loads . 368
7.3.10. Consistent Loads . 369
7.3.11. Pressure_Z . 369
7.3.12. Surface Charge . 370
7.3.13. Static Loads . 370
7.3.14. Time Varying Loads . 371
7.3.15. Random Pressure Loads . 371
7.3.16. Frequency Dependent Loads . 375
7.3.17. Modal Force Loading . 375
7.3.18. Rotational frames . 376
7.3.19. Rigid Body Filter for Input . 380
7.3.20. RanLoads . 381

7.4. Initial Conditions . 383
7.4.1. Reading Initial Conditions from the Mesh File 384
7.4.2. Setting Initial Conditions in the Input Deck 384

7.5. Use cases for initial acceleration . 385
8. Output . 387

8.1. Exodus . 387
8.1.1. Surface Projection of Element Variables 389
8.1.2. Database Name . 390
8.1.3. Properties . 390
8.1.4. Maa . 392

vi

8.1.5. Material . 392
8.1.6. Material direction . 392
8.1.7. Kaa . 392
8.1.8. Faa . 392
8.1.9. MLumped . 392
8.1.10. MPhi . 393
8.1.11. ElemEigChecks . 393
8.1.12. ElemQualchecks . 394
8.1.13. Displacement . 396
8.1.14. Velocity . 397
8.1.15. Acceleration . 397
8.1.16. Strain . 397
8.1.17. Strain = GP . 398
8.1.18. Stress . 398
8.1.19. Principal Stresses . 399
8.1.20. von Mises stress . 400
8.1.21. Signed von Mises Stress . 400
8.1.22. Rainflow Cycle Counting . 400
8.1.23. Fatigue Damage . 401
8.1.24. Stress = GP . 401
8.1.25. Vrms . 403
8.1.26. Rotational_displacement . 403
8.1.27. Rotational_acceleration . 403
8.1.28. Energy . 403
8.1.29. GEnergies . 403
8.1.30. Globals . 404
8.1.31. Block_Energies . 404
8.1.32. Mesh_Error . 405
8.1.33. MFile . 405
8.1.34. Force . 407
8.1.35. Constraint force . 407
8.1.36. Reaction Force . 407
8.1.37. Right-hand side . 408
8.1.38. EForce . 408
8.1.39. Line_Weld . 410
8.1.40. Relative_Disp . 410
8.1.41. Residuals . 411
8.1.42. TIndex . 412
8.1.43. EOrient . 413
8.1.44. Pressure . 413
8.1.45. NPressure . 414
8.1.46. APressure . 414
8.1.47. acousticIncident . 414
8.1.48. acousticHydrostatic . 414
8.1.49. APartVel . 414

vii

8.1.50. Constraint_Info . 415
8.1.51. Statistics . 415
8.1.52. KDiag . 416
8.1.53. ADiag . 418
8.1.54. ddamout . 418
8.1.55. Temperature . 420

8.2. User Output . 420
8.2.1. Element Variable Spatial Statistics . 420
8.2.2. Nodal Variable Spatial Statistics . 421
8.2.3. The Closest Distance . 423
8.2.4. Temporal Variable Statistics . 426
8.2.5. Analytic Function Output . 427

8.3. Output of Internal Variables . 429
8.4. History . 429

8.4.1. Global History Output Near a Location 431
8.5. Frequency . 433
8.6. Linesample . 434
8.7. Stresses and Strains . 435

8.7.1. Stress/Strain Truth Table . 436
8.7.2. Solid Elements . 438
8.7.3. Shell Elements . 438
8.7.4. Beam Elements . 439

8.8. Echo . 440
8.8.1. Mass Properties . 442
8.8.2. Multipoint constraints . 443
8.8.3. ModalVars . 443
8.8.4. Subdomains . 443
8.8.5. Memusage . 444

9. Contact . 445
9.1. Tied Surfaces . 445

9.1.1. Contact Normal Vectors . 446
9.1.2. Mortar Methods . 448
9.1.3. Node to Face . 448

9.2. Contact Definition . 450
9.2.1. Defining Contact Surfaces . 452
9.2.2. Setting up Contact Interactions . 454
9.2.3. Gap removal . 456
9.2.4. Examples . 457
9.2.5. Notes and Usage Guidelines . 458
9.2.6. Differences Between SM and SD Defaults 459

9.3. Lofted Surfaces and Gap Removal . 459
9.3.1. Example . 459
9.3.2. Projection Approach . 460

9.4. Spot Welds . 462
9.4.1. Syntax . 462

viii

9.4.2. Outputs . 463
9.4.3. Specifying Spot Weld Stiffnesses . 464
9.4.4. Usage at discrete points . 464
9.4.5. Usage as an alternative to Tied Joint or Surface Contact 465

9.5. Moving MPCs . 466
10. Example Input Decks . 467

10.1. Eigenvalue problem . 467
10.2. Anisotropic Material . 467
10.3. Multiple materials . 469
10.4. Modaltransient . 471
10.5. ModalFrf . 473
10.6. Directfrf . 474
10.7. Statics . 475

Bibliography 477
Index . 483

Index 483

ix

LIST OF FIGURES

Figure 2-1. Single Spring element. 31
Figure 2-2. Truss Decomposition Issues. 32
Figure 3-3. Example MFile Format Results. 50
Figure 3-4. Eigen Sensitivity Example Data . 84
Figure 3-5. Semi-Analytic Methods for Sensitivity Analysis. 86
Figure 3-6. Coordinate system definition vectors: note that XZ POINT determines the

X̃ axis, but need not lie along it, which is the case depicted in this figure. 90
Figure 3-7. Coordinate System Examples . 91
Figure 3-8. Conical Coordinate System Definition at X̃Z̃ plane . 91
Figure 3-9. Ellipsoidal Coordinate System Using axis_stretching=(2.0, 1.1, 1.0). r̂ is

red, ŝ is green, and t̂ is blue. 92
Figure 3-10. Coordinate system behavior near the Z̃ axis. r̂ is red, ŝ is green, and t̂ is

blue. 94
Figure 3-11. Full model with different coordinate system uses . 95
Figure 3-12. Linear function "ignored_point". 97
Figure 3-13. Linear function "extrapolation". 98
Figure 3-14. Linear function #5. "multiple_fun". 98
Figure 3-15. RandomLib Temporal Interpolation. 103
Figure 3-16. Spherical Wave Geometry. 116
Figure 3-17. Fluid-Structure Interaction (FSI) Infrastructure. 120
Figure 3-18. Illustration of first crossing blended function. 121
Figure 3-19. Illustration of Nth crossing blended functions. 122
Figure 4-20. Craig-Bampton Reduction . 143
Figure 4-21. Superposition Data Flow Diagram. 202
Figure 4-22. Waterline Coordinate Definition . 218
Figure 4-23. Net Force vs depth for a Rigid Body . 219
Figure 5-24. S-N Curve for Steel Sheet . 237
Figure 6-25. QuadT Element. 260
Figure 6-26. Quad8T Element. 260
Figure 6-27. Tria6 Element. 261
Figure 6-28. Function for nquad_eps_max. 264
Figure 6-29. Projection of global coordinate system to shell. 267
Figure 6-30. Rotation of global coordinate system about axis prior to projection to shell.267
Figure 6-31. Rotation of local system about normal after to projection to shell. 268
Figure 6-32. Stacking arrangement for a multi layer shell element. 269
Figure 6-33. Offset examples for shell of thickness 0.1. 270
Figure 6-34. Beam Orientation and Local Coordinate System. 277
Figure 6-35. Beam Offset and Local Coordinate System. 279

x

Figure 6-36. Nbeam Orientation, Offset and Local Coordinate System 281
Figure 6-37. Hys element parameters. 293
Figure 6-38. Iwan Constitutive Model. 297
Figure 6-39. Hysteresis Microslip Variation with β . 299
Figure 6-40. Hysteresis Macroslip Variation with β . 299
Figure 6-41. Reduced Iwan Load Displacement Curve. 301
Figure 6-42. Eplas Model. 302
Figure 6-43. Line weld definitions for attaching the purple and cyan shells. The line

weld follows the red beam, which is contiguously meshed with the purple
shell. 303

Figure 6-44. Line weld Joint2G connections. The Joint2G elements are initially zero-
length, and the green and red nodes coincident, but they are depicted
with a finite deformation to delineate the individual components. 304

Figure 6-45. Gap element Force-Deflection Curve. 308
Figure 6-46. Mass bouncing off a Gap . 309
Figure 6-47. Gap2D force diagram. 310
Figure 6-48. Nmount Orientation . 312
Figure 6-49. Rigidset/TiedJoint Centernode Connection . 325
Figure 6-50. Rrodset Constraints . 327
Figure 6-51. Tied Joint Geometry . 327
Figure 6-52. Tied Joint Surface Normal Definition . 330
Figure 6-53. Construction of tied joint with side=average. 331
Figure 6-54. Construction of tied joint with side=rigid. 331
Figure 6-55. Construction of tied joint with side=Rrod. 331
Figure 7-56. Example of Interpolation of Exodus Data to Analysis Steps. 351
Figure 7-57. Coordinate Frame Projection for Tractions . 359
Figure 7-58. RandomPressure Loading Approximations. 372
Figure 8-59. Convergence of maximum stress at element centroids and surfaces. 389
Figure 8-60. Example KDiag output. 417
Figure 8-61. Tria3 Stress Recovery . 439
Figure 9-62. Shell Normal in Contact or Tied Interactions. 447
Figure 9-63. Search Tolerance definition . 449
Figure 9-64. Normal Definitions on Faceted Geometry . 450
Figure 9-65. Smoothing Parameters for Surface Normal Vectors . 450
Figure 9-66. Lofted Constraint Example. 460

xi

LIST OF TABLES

Table 1-1. Description of full feature deprecation. 3
Table 2-2. Command Line Options Part One . 22
Table 2-3. Command Line Options Part Two . 23
Table 2-4. Determining Number Of Processors Needed. 24
Table 3-5. Comment String Options. 35
Table 3-6. Available keywords in the Parameters section. 42
Table 3-7. Available keywords in the Parameters section related to code coupling

and hand-off. 43
Table 3-8. Developer keywords in the Parameters section. 43
Table 3-9. Some useful combinations of units. 43
Table 3-10. Eigenvector Normalization Methods. 49
Table 3-11. Sierra/SD Solution Options. 53
Table 3-12. Restart file format and contents for various solutions. 61
Table 3-13. GDSW Section Options. (Basic) . 64
Table 3-14. GDSW Section Options 1. (Advanced) . 65
Table 3-15. GDSW Section Options 2. (Advanced) . 66
Table 3-16. GDSW Section Options. (Supplemental Output) . 73
Table 3-17. GDSW Section Options (Advanced). 79
Table 3-18. GDSW Section Print Options. 80
Table 3-19. GDSW Section Options (Helmholtz). 81
Table 3-20. GDSW Section Options (Solvers). 81
Table 3-21. Sensitivity Analysis Keywords. 82
Table 3-22. Sensitivity Analysis Solution Type Availability. 86
Table 3-23. Coordinate Names for history files. 95
Table 3-24. SamplingRandom function parameters. 101
Table 3-25. RandomLib function parameters. 102
Table 3-26. Predefined Analytic Input Variables. 110
Table 3-27. Planar Step Wave Parameters. 115
Table 3-28. Spherical Wave Parameters. 116
Table 3-29. Undex Load Parameters . 118
Table 3-30. Blended Function Parameters. 120
Table 3-31. Table Section Options. 126
Table 3-32. General MPC commands. 128
Table 3-33. MPC Equation lines. 128
Table 4-34. Eigenvalue Solvers. 130
Table 4-35. Modal Solution Types. 130
Table 4-36. Direct Solution Types. 131
Table 4-37. Preprocessing and Postprocessing Solution Types. 131

xii

Table 4-38. Multicase Options. 133
Table 4-39. CJdamp Solution Case Parameters. 134
Table 4-40. Craig-Bampton reduction Solution Case Parameters. 136
Table 4-41. CBModel Parameters. 139
Table 4-42. Data output for Craig-Bampton Reduction. 141
Table 4-43. preddam Solution Case Parameters. 145
Table 4-44. DDAM Solution Case Parameters. 146
Table 4-45. DirectFRF Solution Case Parameters. 149
Table 4-46. Model_Check Solution Case Parameters. 150
Table 4-47. Eigen Solution Case Parameters. 151
Table 4-48. AEigen Solution Case Parameters. 156
Table 4-49. AEigen Verbosity Table. 157
Table 4-50. Largest_Ev Solution Case Parameters. 157
Table 4-51. Fatigue Solution Case Parameters. 158
Table 4-52. Buckling Solution Case Parameters. 161
Table 4-53. ModalFilter Solution Case Parameters. 163
Table 4-54. Modal Filter Keywords. 164
Table 4-55. Modal Participation Factor Solution Case Parameters. 165
Table 4-56. MPF Summary data . 167
Table 4-57. ModalFrf Solution Case Parameters. 168
Table 4-58. ModalRanVib Solution Case Parameters. 173
Table 4-59. ModalRanVib Output to Exodus File . 176
Table 4-60. ModalShock Solution Case Parameters. 178
Table 4-61. ModalTransient Solution Case Parameters. 179
Table 4-62. QEVP Solution Case Parameters. 181
Table 4-63. A 2005 Comparison of Quadratic Eigenvalue Problem Methods. Al-

though Ceigen and Anasazi have changed substantially since 2005, this
table has not been updated to reflect those changes. 183

Table 4-64. Options for qevp Anasazi Solutions. 183
Table 4-65. ceigen Solution Case Parameters. 184
Table 4-66. Ceigen Tests. 185
Table 4-67. SA_Eigen Options. 187
Table 4-68. Verification Summary for SA_Eigen. 188
Table 4-69. Projection_Eigen Options. 189
Table 4-70. NLStatics Solution Case Parameters. 190
Table 4-71. NLTransient Solution Case Parameters. 192
Table 4-72. Random Vibration Solution Case Parameters. 193
Table 4-73. Receive_Sierra_Data Solution Case Parameters. 194
Table 4-74. Nodal data used in receive_sierra_data. 196

xiii

Table 4-75. Element data used in receive_sierra_data. Volumetric stress deter-
mines a geometric stiffness and an internal force. The options to skip
these operations are
no_geom_stiff and (include_internal_force=off respectively. Only
the Neo-Hookean, “neo_hookean”, and hyperfoam, “hyperfoam”, Lamé
models are supported. And of these, only hyperfoam has a state. For
hyperfoam, comp is either L11, L22, L33, L12, L23, L31, L44, L55 or L66 197

Table 4-76. Data Transferred in receive_sierra_data specific to orthotropic_layer
materials. Some of this data is transferred automatically. Other data
requires the from_transfer keyword in the material definition (denoted
by an asterisk in the Effect column). 198

Table 4-77. Statics Solution Case Parameters. 201
Table 4-78. Superposition Solution Case Parameters. 201
Table 4-79. Tangent Solution Case Parameters. 203
Table 4-80. TranShock Solution Case Parameters. 204
Table 4-81. Transient Solution Case Parameters. 206
Table 4-82. TSR_preload Solution Case Parameters. 210
Table 4-83. Residual Vectors Solution Case Parameters. 212
Table 4-84. GeometricRigidBodyModes Solution Case Parameters. 214
Table 4-85. Waterline Solution Case Parameters. 216
Table 4-86. Gap Removal Solution Case Parameters. 220
Table 5-87. Material Stiffness Parameters. 224
Table 5-88. Material Section Parameters for Fatigue Parameters. 234
Table 5-89. Common Unit Scalings using Fatigue_Stress_Scale 235
Table 5-90. Element Attributes. 246
Table 5-91. General Block Parameters. 248
Table 5-92. Non-Structural Mass Units. 250
Table 5-93. Unhandled Corner Cases. 250
Table 5-94. Combining NSM with Density_Scale_Factor. 250
Table 5-95. DAMPING Section Options. 252
Table 6-96. QuadT, Quad8T, Tria6 Inputs. 261
Table 6-97. QuadM inputs. 262
Table 6-98. Nquad/Ntri inputs. 264
Table 6-99. TriaShell input options. 265
Table 6-100. Shell parameters that can be set via attributes. 271
Table 6-101. HexShell Verification Summary. 275
Table 6-102. Attributes for Beam2. 279
Table 6-103. Attributes and Parameters for Nbeam. 283
Table 6-104. Ftruss Attributes and Parameters. 285
Table 6-105. SpringDashpot Parameters. 291
Table 6-106. Older Iwan 4-parameter model. 296
Table 6-107. Revised Iwan 4-parameter model. 298
Table 6-108. Line weld output: note that these are intended to exactly match the

equivalent outputs in Sierra/SM. 306
Table 6-109. Built in Nmount Models. 313

xiv

Table 6-110. Rbar Exodus Attributes. 315
Table 6-111. Acceptable names of matrices within DMIG input files. 323
Table 6-112. Rigidset Parameters. 325
Table 6-113. Tied Joint Parameters. 328
Table 6-114. Tied Joint, “Normal” and “Side” dependencies. 332
Table 7-115. Dirichlet Boundary Enforcement Keywords. 336
Table 7-116. Limitations for Prescribed Acceleration Boundary Conditions. 340
Table 7-117. Available parameters for the infinite element section. 344
Table 7-118. PML Element Parameters. 347
Table 7-119. Parameters for Periodic Boundary Conditions. 350
Table 7-120. ReadNodal function parameters. 352
Table 7-121. Load Specification Keywords. 360
Table 7-122. Random Pressure Inputs. 373
Table 7-123. Rotating Frame Parameters. 377
Table 8-124. OUTPUT Section Options A-L. 387
Table 8-125. OUTPUT Section Options M-Z. 388
Table 8-126. Exodus Property Output Options. 391
Table 8-127. Elements using other elements condition number. 394
Table 8-128. Hex20 Gauss Point Locations . 402
Table 8-129. Data Files Written Using the MFile Option. 406
Table 8-130. Typical Output. 409
Table 8-131. FRF Output. 409
Table 8-132. ModalRanVib Exodus Output. 409
Table 8-133. ModalRanVib Frequency Output. 410
Table 8-134. Typical Output. 411
Table 8-135. ModalRanVib Frequency Output. 411
Table 8-136. ModalRanVib Exodus Output. 411
Table 8-137. TIndex parameters. 412
Table 8-138. Element Orientation Outputs. 413
Table 8-139. Element Orientation Interpretation. 413
Table 8-140. Supported Statistical Data types . 416
Table 8-141. Selected Dynamic Matrix Definitions. 418
Table 8-142. Variables that are output from DDAM analysis. 419
Table 8-143. ModalRanVib Frequency Closest Distance Nodal Output. <name> is

the name of the user output request. 424
Table 8-144. ModalRanVib Exodus Closest Distance Nodal Output. <name> is the

name of the user output request. 425
Table 8-145. Frequency Value Specification Methods. 433
Table 8-146. Element Stress Truth Table. 437
Table 8-147. Echo Section Options. 441
Table 9-148. Tied Surface Parameters . 449
Table 9-149. Coordinates of Face (red) and Nodes (blue). 460
Table 9-150. Conventional Constraint Equations. 460

xv

This page intentionally left blank.

xvi

Acknowledgments

The Sierra/SD software package is the collective effort of many individuals and teams. A
core Sandia National Laboratories based Sierra/SD development team is responsible for
maintenance of documentation, testing, and support of code capabilities. This team
includes Dagny Beale, Gregory Bunting, Mark Chen, Nathan Crane, David Day, Clark
Dohrmann, Sidharth Joshi, Payton Lindsay, Justin Pepe, Julia Plews, Timothy Shelton,
Brian Stevens, and Johnathan Vo.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly
enhance and maintain several capabilities. This includes contributions from Volkan
Akcelik, Ryan Alberdi, Wilkins Aquino, Brett Clark, Murthy Guddati, Sean Hardesty,
Cameron McCormick, Clay Sanders, Chandler Smith, Benjamin Treweek, Timothy Walsh,
and Ray Wildman.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared
tools. This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams.
Additionally, analysts regularly provide code capabilities as well as help review and verify
code capabilities, testing, and documentation. Other individuals not already mentioned
directly contributing to the Sierra/SD documentation, testing, and code base during the
last year include Frank Beckwith, Samuel Browne, Victor Brunini, Jared Crean, David
Glaze, Mark Hamilton, Dong Lee, Mario LoPrinzi, Scott Miller, Tolulope Okusanya,
Heather Pacella, Kendall Pierson, Tom Ransegnola, Greg Sjaardema, Alan Williams, and
Christopher Wilson.

Historically dozens of other Sandia staff, students, and external collaborators have also
contributed to the Sierra/SD product and its documentation.

Many other individuals groups have contributed either directly or indirectly to the success
of the Sierra/SD product. These include but are not limited to;

• Garth Reese implemented the original Sierra/SD code base. He served as principal
investigator and product owner for Sierra/SD for over twenty years. His efforts and
contributions led to much of the current success of Sierra/SD.

• The ASC program at the DOE which funded the initial Sierra/SD (Salinas)
development as well as the ASC program which still provides the bulk of ongoing
development support.

• Line managers at Sandia Labs who supported this effort. Special recognition is
extended to David Martinez who helped establish the effort.

• Charbel Farhat and the University of Colorado at Boulder. They have provided
incredible support in the area of finite elements, and especially in development of
linear solvers.

1

• Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and
includes the summer of 2001 where he visited at Sandia and developed the HexShell
element for us.

• Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for
eigenvalue problems.

• Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for
much of the performance in Sierra/SD linear solvers.

• The metis team at the University of Minnesota. Metis is an important part of the
graph partitioning schemes used by several of our linear solvers. These are copyright
1997 from the University of Minnesota.

• Padma Raghaven for development of a parallel direct solver that is a part of the
linear solvers.

• The developers of the SuperLU Dist parallel sparse direct linear solver. It is used
through GDSW for a variety of problems.

• Leszek Demkowicz at the University of Texas at Austin who provided the HP3D24

library and has worked with the Sierra/SD team on several initiatives. The HP3D
library is used to calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development
(LDRD) program.

2

1. Release Notes

1.1. Feature deprecation procedure

From time to time, the Sierra/SD development team may determine that a feature should
be deprecated. This might happen if a certain newly developed capability, workflow, or
input syntax is preferred over an existing one. It may also occur when a capability is
determined by the development team to be unused by the analyst community, and thus it
does not need to be maintained any longer.

When a feature is selected for deprecation, Sierra/SD will issue a clear warning message
in the log file with planned date and code version for full deprecation. These release notes
will also be kept up-to-date with newly planned feature deprecations and their respective
planned full deprecation dates and Sierra/SD versions.

Full feature deprecation is based on the fiscal year schedule. Features marked for
deprecation between October and September of a given year will be fully deprecated in the
first release of the following fiscal year, i.e., the first release that falls on or after the first
day in October. For example,

• A feature marked deprecated in April 2023, is fully deprecated in the first release
occurring on or after October 1, 2024.

• Features marked deprecated in September 2023 are fully deprecated in the first
release on or after October 1, 2024.

• A feature marked deprecated in October 2023, is fully deprecated in the first release
on or after October 1, 2025.

Full deprecation of a given feature is subjective, but is described in detail in Table 1-1.

Table 1-1. – Description of full feature deprecation.
The feature
will. . .

Sierra/SD will out-
put. . .

Rationale

be disabled com-
pletely

fatal error, log file mes-
sage

if there is reasonable skepticism of the accuracy or
reliability of the feature.
if there are hazardous side effects from using the
feature.
if it is not safe to ignore input syntax.
if the code team no longer wishes to maintain the
feature.

do nothing log file warning if the input syntax can be safely ignored.
remain func-
tional

log file warning if no harmful side effects are identified in the code.

if little or no effort is required for the code team
to maintain the feature.

3

1.2. Release 5.14

New or Improved Features

• The closest distance gaps computed in modal random vibration analyses now output
the nominal distance as well as all components of the random vibration relative
displacement tensor.

• All user output nodal variables (closest distance - section 8.2.3, temporal statistics -
section 8.2.4, and analytic function output - section 8.2.5) are now supported for
output in statics solution cases.

• User-defined nodal variables based on analytic functions (section 8.2.5) are now
support for modaltransient solution cases. Previously, only transient was supported.

• Element condition numbers now report a min/max range, unsupported elements are
now clearly marked, and additional beam/shell quality metrics have been added. See
section 8.1.12 for more information.

• The meaning of “expression variable = time” has changed when evaluating analytic
functions, and a new expression variable, “input”, has been added in its place. See
section 3.8.9 for more information.

• A memory leak associated with MPI-based code coupling for coupled SD-Fuego and
SD-SPARC analysis has been corrected. This issue could have caused long running
coupled analyses to crash due to running out of memory.

• Several improvements have been made to the User Output system including improved
robustness, guardrails, and applicability to a wider range of solution cases.

• Spot welds are now functional with higher order faces of Tet10 or Hex20 elements.

• Displacements and loads can now be mapped from an auxiliary geometry file with a
different mesh discretization.

Deprecated Features

No deprecated features were removed from tests or code.

Bug Fixes

• The behavior of flush (section 3.4.1) was previously dependent on nskip
(section 4.29.0.4) such that outputs (including restart files) were only flushed every
flush*nskip time steps. This would typically preclude the use of a large nskip value
(e.g. only outputting at the final step) in simulations requiring restart,
even if flush had not been set, since the default is 50. This behavior has been fixed,
and flush=N will now flush every Nth time step as expected.

4

1.3. Release 5.12

New or Improved Features

• Closest distance nodal calculations now support PSD/RMS outputs when requested
in a modal random vibration (modalranvib) solution case.

• The linesample command now accepts a user input for the output filename.

• Variables on the input mesh (e.g., for receive_sierra_data and tsr_preload) can now
be read from a user-selected step using the following syntax: step =
first|last|<int> or time = first|last|<real>. See section 4.24.1 for more
information.

• The step to read initial conditions from the input mesh can now be selected directly
with step = <int>. See section 7.4.1 for more information.

• Significant performance optimizations have been realized in the modalranvib
solution case, especially in instances where the user has

1. Specified many loads or

2. Requested VRMS output.

Performance gains are expected to be especially noticeable on GPU-accelerated
computing platforms.

• There is new verification manual documentation of a comparison between
Sierra/SM and Sierra/SD one-dimensional elements, including trusses, springs,
bars, and beams.

• The nemo_coupling solution case now supports all the solution case options available
in the standard transient solution case.

• New outputs have been added for the acoustic transient case. The keywords for an
incident scattering load or for hydrostatic pressure are acousticIncident and
acousticHydrostatic respectively.

• When reading a deformed state from Sierra/SM, Sierra/SD now computes the mass
properties in the deformed configuration. This conserves mass if the prerequisite
densities are coaxed from Sierra/SM.

• A new solution case ’model_check’ has been added for debugging model setup by
outputting various diagnostic information. This case replaces the ’dump’ and
’checkout’ solution cases which are now deprecated.

• HISTORY/FREQUENCY sections now support output of nodal variables in a local
coordinate system based on a block selection. Previously, coordinate systems were
only valid for nodeset and sideset selections. See section 8.4 for more information.

5

• The maximum_name_length exodus output property can now be controlled from the
output/frequency/history sections. Any exodus field names longer than this value
will be truncated. See section 8.1.3 for more information.

Deprecated Features

• ASSEMBLY sections can no longer be defined twice in the same input deck. Instead,
a single assembly should be used, e.g.

BEGIN ASSEMBLY foo
sideset 1:3,surface_5

END

BEGIN ASSEMBLY foo
sideset bar

END

⇒
BEGIN ASSEMBLY foo
sideset 1:3,surface_5,bar

END

Note that assemblies that exist on the mesh can still be modified using an assembly
of the same name in the input.

The change was made to be consistent with Sierra/SM behavior, as well as the
behavior of other named sections in Sierra/SD, which cannot be duplicated. See
section 3.2.3 for more information.

Beta Features

Capabilities that require the - -beta flag in Sierra/SD.

• The complex viscoelastic material model is marked beta in Sierra 5.12.

• The complex viscoelastic material model can now be used with the NQuad shell
element and NBeam beam element.

• An initial capability for computing the statistical properties of gap between bodies
during a modal random vibration calculation has been developed. It is implemented
via the existing user output syntax for the closest distance. The capability is still in
active development and will be production ready in a future release.

• Time varying displacement boundary conditions can now be used in direct transient
solution as a beta capability.

6

1.4. Release 5.10

New or Improved Features

• Spatial statistics of output variables have been extended to support nodal
variables/fields. Previously, only element variables were supported (section 8.2.1).
The command compute global out_name as max|min||avg|... of nodal
var_name section 8.2.2 enables spatial statistics.

• Spot welds (force-displacement formulation) are also now gap invariant. Even when
large gaps are present, this new set of constraints will be invariant to rigid rotation
section 9.4.

• Spot Welds now support a Distributed Area Weld. The surface area-based scaling
allows for a compliant connection between surfaces, including transition between fully
bonded tied interfaces and unconnected interfaces. Spot Welds are the penalty
formulation alternative to MPC-based tied data, just as they are in Sierra/SM. The
advantages over tied data include rotation invariance without gap removal and
potential reductions in linear system bandwidth. Furthermore users can now tune
joint stiffness. A distributed spot weld may be a better choice than a tied joint
section 9.4.5. for connections such as surface on surface adhesion. Other cases such as
bolts, remain best suited to tied joints.

• Analytic functions now support section 3.8.9 using the output from other functions as
an expression variable.

• Several tools have been added or updated:

– stk_balance has been optimized to generate fast-running meshes in Sierra/SD.
It is now recommended to use stk_balance with the –sd flag for ALL
Sierra/SD analyses.

– A new script convertUnits can convert output files between unit systems.

Deprecated Features

No deprecated features were removed from tests or code.

Bug Fixes

• In transient problems, an extra time step might have been added unexpectedly. This
error was due accumulation of machine precision errors in the time step calculation.
This bug has been fixed and a consistent number of time steps (as described in
section 4.29) can be expected.

7

Documentation Updates

• The minimum element diameter, 10−10, is now documented.

• We have included a new verification test manual chapter documenting which element
formulations are compatible between Sierra/SM and Sierra/SD. Tests (e.g., spot weld
test) have been updated to use compatible elements, increasing confidence and
enabling much tighter test-passing tolerances. This topic is also summarized in
section 6.33.

1.5. Release 5.8

New or Improved Features

• Sierra/SD now works consistently with the sierra script –post option. This option
will automatically detect the various output Exodus files generated by Sierra/SD
and join them using epu if running in parallel.

• A new buckling solver option was added (bucklingSolver =
ARPACK_Regular_Inverse). This solver does not require the manual specification of
a shift, and is the recommended solver to use (although not currently the default).
See section 4.13 for more details.

• Lamé material hand-off now supports initialize variable name syntax to read in
user-defined fields. See sections 4.24 and 5.1.4 and table 4-75 for more details.

• We now support user-defined nodal variables based on analytic functions (beta
capability). For more information, see section 8.2.5.

• We now support the output of internal nodal variables (beta capability). For more
information, see section 8.3.

Deprecated Features

No deprecated features were removed from tests or code.

Bug Fixes

• An error has been corrected that could cause models with line welds to fail when the
weld beam shared nodes with the weld surface.

• The element variables used in Lamé material hand-off (table 4-75) were previously
not obtained from the last time-step on the input mesh. This was inconsistent with
documentation and expectations, and it has been updated.

8

• A bug was discovered in receive_sierra_data (section 4.24) where Gauss point
stresses were being transferred from the first step of the mesh, while all other
quantities (including centroid stresses) were being transferred from the last step.
This has now been fixed, and Gauss point stresses are consistently transferred from
the last step.

• Transient thermal data read in from the mesh using the nUpdateTemperature option
(sections 5.4.6 and 7.3.8) was previously being read in at the step prior to the current
step (off-by-one error). It is now read in from the correct/current step.

Documentation Updates

• Element rotations were previously listed as one of the transferred fields for Lamé
material hand-off (table 4-75). While this used to be the case, rotations are not
currently transferred, and the documentation has been updated accordingly.

1.6. Release 5.6

New or Improved Features

• von Mises output (section 8.1.20) has been standardized.

Requesting von Mises will now output the (maximum) von Mises stress as it always
has, but now it will also output the von Mises stress at each layer for surface elements
(section 8.7.3), and each stress recovery point for beam elements (section 8.7.4).

• Analytic functions can now be used in variable initialization for nodal field variables.

This allows mathematical operations to be performed on variables as they are read
in, such as scaling, or analytically defined preload fields. See input 4.10 for an
example use case.

• Additional stress output metrics for DDAM solutions have been enabled. These include
stress output at each mode, hydrostatic stress for 3D elements, and maximum shear
stress for 3D elements. NRL-sums of each of the above is also provided. See
section 8.1.54 for more information.

• The closest distance calculations (section 8.2.3) have been extended to support
higher-order elements.

Deprecated Features

• The mpmd_transfer_version parameter (table 3-7) option “old” has been
deprecated in favor of “NSC” to be more descriptive.

9

Bug Fixes

• von Mises output (section 8.1.20) has been standardized. Previously, the von Mises
stress reported from requesting von Mises output could potentially be different from
what would be reported if the full stress tensor was requested (stress). Specifically,
this was the case with volumetric elements with thermal stress.

The behavior with beam elements containing stress recovery points has also been
slightly modified to be in line with the existing documentation and intent.
Previously, the default von Mises stress in the absence of stress recovery points (the
absolute value of the axial stress), was included in the maximum von Mises
calculation even when stress recovery points were present. This is no longer the case.
See section 8.7.4 for more details.

• Minor bug fixes and robustness improvements of the following capabilities:

– Contact (9.2).

– mesh_error output (section 8.1.32)

– tsr_preload solution case (section 4.30)

– Applied pressure output (section 8.1.44) for elements with multiple sides in a
sideset.

Documentation Updates

• Equations have been added that represent the mesh_error output (section 8.1.32).

• The equation for the NRL-sum computation has been added to the ddam output
section (8.1.54).

• Several coordinate system figures were updated for correctness and avoid potential
confusion (figures 3-7 and 3-10 and input 3.3).

• The inverse problem documentation has been moved into a stand-alone manual.

• An example of how to use MATLAB output (mfile) has been added
(section 8.1.33.1).

• Piezoelectric and dielectric material examples (inputs 5.5 and 5.6) have been updated
for correctness.

• The receive_sierra_data documentation (section 4.24) has been updated for
correctness and style.

10

1.7. Release 5.4

New or Improved Features

• The closest distance user output 8.2.3 has been enabled to also to compute a nodal
field which is the closest distance at each node.

• A TSR preload verification document was added to the Verification Manual.

• New commands scale and translate 3.8.1 functions.

• New output of the max, min, average, or standard deviation of element variables. See
Section 8.2.4.

• Sierra/SD now works consistently with the sierra script –pre option. This option
will automatically detect the mesh file used by the Sierra/SD analysis and
decompose it in parallel if this has not yet been done.

• When importing data from a previous solution, alternative names for exodus fields
(such as displacement, stress, etc.) are now supported. See Section 4.24.

• Material properties can now be defined as general functions of element or nodal
variables. See Section 5.4.7.

Deprecated Features

The Sierra/SD syntax for including files in an input deck, such as #include
material.inp or include material is deprecated, in favor of the Aprepro syntax used by
other Sierra codes. For example {include(material.inp)}.

Other features that have been newly deprecated or previously deprecated and removed:

• Constraint output syntax slave_constraint_info

• Contact side b - side a option replaces master and slave respectively.

• Solution case QmodalFrf

• Echo none, mpc_nonorthog options

• GDSW parameter atLeastOneIteration

• RBE3 option method old|new.

• non-aprepro input deck file includes

• Option thickness varies by element

• File sierra_input_file command

• Old Coordinate section syntax. Use begin rectangular coordinate system,
begin cylindrical coordinate system etc. instead.

11

• Material name option.

Bug Fixes

Maintenance and development prioritizes use cases. Input is implemented using Functions.
Some Functions can use data from either the input deck or the Exodus mesh file. These
Functions can interpolate, extrapolate and integrate (once or twice).

Changes were made so that the Linear, 1D Table, SM and Spatial BC Functions have
consistent behavior. Spatial BC Functions include Random Lib Functions. SM refers to
Sierra SM Piecewise Linear Functions. In several cases, the behavior changed from possibly
inconsistent to consistent. The Functions are now unit tested and documented.

Table Functions are linear Functions optimized for constant time step size. A Table
Function dimension can be 1,2,3, or 4. One dimensional Table Functions have high priority.
The handling of edge cases for 1D Table Functions improved. It is possible, albeit unlikely,
that simulation results will change. Higher dimensional Table Functions have the old
behavior. They are complex. Their behavior with edge cases is not known by current
developers. The priority of 2D Table Functions requires clarification. 3D and 4D Table
Functions have low priority.

The behavior of SpatialBC and RandomLib Functions was improved. Previously, these
Functions were incorrect in a way that would have artificially forced the value to be zero at
t= 0, and also would have shifted all the values as if the origin was at t= 0. Regression
test results were changed (see sha a743640134329a08ddeaab8ab69 in the Test repository).
Spatial BC Functions have low priority.

Contact tolerances for shell-to-shell contact have been improved. Previously tolerances
only used half the shell thickness in the search tolerances and could miss contact.

The contact cutoff which is used to exclude nodes from contact based on field variable
values now only considers the field value on the node of the node-on-face constraint. This
is more consistent with how Sierra/SM writes such variables, the hand-off of which is the
primary use case for this capability.

Fixed a bug where the attribute order could be scrambled in the output results mesh. This
would cause issues if that output mesh was used as the input of a subsequent SD analysis.

Now using a solver_options for global GDSW parameters will override the any global
options specified. Previously the global options would always be used.

1.8. Release 5.2

Sierra/SD is considered production ready for the ATS-2 platform which utilizes GPUs.
Most commonly used solution cases such as Eigen and transient show substantial speedup
using this platform’s GPUs. Detailed documentation on how to run Sierra/SD on ATS-2

12

can be found in the online wiki “Running Sierra/SD on ATS-2”. Contact
sierra-help@sandia.gov to locate this information.

A capability has been implemented for in-core transfer of loads from a simultaneously
running SPARC analysis. See Section 7.2.6.

Several improvements have been made to automatically handle potentially over-determined
constraints produced by self contact or contact between surfaces that also share nodes.

Thanks to Dagny Beale for reviewing the Coordinates section (2.8).

User mounts may now be incorporated into Sierra/SD at runtime.

The nskip parameter can now be set independently in the linesample input.

Analytic functions can now be spatially dependent functions of coordinates or other
variables. See Section 3.8.9 for more details.

Rain flow cycle counting of stress cycles and fatigue estimation from these cycles is now
available in transient solution. See Section 8.1.22. Additionally, an example of this
capability has been added to the “How To” manual.

Sierra/SD will disallow use of certain reserved words for thing like block names as they
would cause ambiguity in parsing. For example a block named “end”. See Section 3.2.4 for
more details on how to determine reserved names and also how to override this error
handling for legacy models.

Several improvements have been made to the eigenvalue sensitivity output. Previously the
column labels for output did not accurately describe what these outputs represented.

Many improvements have been made to robustness for output and history files. This was
accomplished making it possible to request every output in any solution case. If additional
issues are seen, then please report them to sierra-help@sandia.gov.

A new QUIVER video is available on solver debugging. Additionally, training videos
recorded from a several day in-person class are available on the Computational Simulation
Knowledge Base website. Contact sierra-help@sandia.gov to locate them.

The input deck is now by default echoed to the Sierra/SD log file. This echoing can be
turned off by specifying “input off” in the echo block.

The default solver shift for modal solver has been changed from “-1” to “-1.0e+6”. Ideally
the shift should be set to the negative of the first eigenvalue of for the system (the square
of two pi times the first flexible frequency.) The new default is much more likely to be in
the right ballpark for most engineering systems. However, consideration still needs to be
given to shift for hard to solve problems. Additionally, the default maximum size of type 1
constraints was raised from 100 terms to 250 terms to improve solver robustness.

The input syntax to create exodus assemblies within the Sierra/SD input deck was
renamed from MESH GROUP to BEGIN ASSEMBLY for greater consistency with other Sierra
applications.

13

The TriaShell mass matrix calculation has been improved. Previously it was missing the
inertia terms relating to the shell thickness. In practice the effect of these terms is usually
slight as shell structures should be relatively thin compared to element size.

Deprecated Features

Features that have been newly deprecated or previously deprecated and removed:

• Material syntax name=string, T_current=real, s_isotropic

• Constraint output syntax slave_constraint_info

• Tied data and contact syntax master, slave

• Joint2g option Shys

• Solution case QmodalFrf

• Solution case Qmodaltransient

• ncfout (output4, op4) utility,

• Solution parameter no_symmetrize_struc_acous (has been replaced by
symmetrize_struc_acous)

• RBE3 option method old|new.

• GDSW parameter atLeastOneIteration

• Old Coordinate section syntax. Use begin rectangular coordinate system,
begin cylindrical coordinate system etc. instead.

• Echo none, mpc_nonorthog options

• File sierra_input_file command

• Coupling to the deprecated application Aero

• Runtime compiled functions (RTC)

14

1.9. Release 5.00

A new chapter of User’s Manual describes how to run Sierra/SD §2.1 and other
fundamental usability issues. Also, Sierra/SD tutorials for new users are available
https://snl-wiki.sandia.gov/display/CKB/How-to+articles

An Exodus hierarchical data structure, the Assembly,55 has been developed to make
building models easier. Sierra/SD has full support for Assemblies §3.2.2

The GDSW linear solver is compatible with certain Graphical Processing Units. Users may
notice more precise timing information of GDSW. This release includes a full featured
interface §3.5 to the SuperLU Dist parallel sparse direct linear solver.

The default GDSW preconditioner is designed for poorly conditioned problems, and is a
less efficient option for well conditioned problems. An adaptive block diagonal
preconditioner §3.5.6 can be used by setting preconditioner_type to 3. The options
§3-15 identify_low_quality_elements and max_element_condition enrich the diagonal
preconditioner based on mesh element quality.

Sierra/SD and Sierra/SM use consistent input syntax and share source code for
coordinate systems §3.7. Coordinate system definition options have been added such as
defining coordinate system by nodesets. Ellipsoidal coordinate systems are now available.

The syntax for spatial boundary condition functions that read data from the mesh is more
consistent. It is necessary to specify the variable that the function reads. For consistency
with the methods for input from the mesh, the keyword variable_name has been replaced
by the keyword exo_var.

Traction input is supported. The ReadSurface function §7.2.4 will input spatially
dependent and time dependent data from the mesh file. The data is automatically
integrated to determine the corresponding forcing function.

Huge improvements in the performance of the Modaltransient §4.19 and ModalFrf §4.16
methods have made it possible to remove the Qmodaltransient and QmodalFrf methods.
The output capabilities of Modaltransient and ModalFrf solutions have been extended to
reproduce all the capabilities of Qmodaltransient and QmodalFrf.

Another capability to compute all the eigenvalues and eigenvectors for problems with
modest numbers of dofs has been extended to handle several important cases such as
models with a singular mass matrix and models with multipoint constraints.

The geometric rigid body mode solution case now works for models with any Sierra/SD
element including Superelements (c.f. Jira Compsimhd-5610)

Users may use the input Exodus mesh to set spatially dependent material properties
fields §5.4.7.

Acoustic boundary conditions §7.3.7 include the point_volume_acceleration. An
acoustics problem can use void elements in the structural mesh to represent air. The void
elements move with the solid elements. The flux air volume causes an acoustic pressure

15

https://snl-wiki.sandia.gov/display/CKB/How-to+articles

wave to propagate out. One approach is to map the volume flux term in the solid to the
closest acoustic element. A new approach is to map the volume flux term to the void
elements representing the air.

HexShell element §6.8 input syntax is compatible with new coordinate frame syntax. Users
must specify the thickness direction of the elements. One way to do this is through a
coordinate frame. The frame may also be specified by name instead of the id, which is
clearer.

All Sierra/SD elements support stress output. The corresponding issues are Jira
Compsimhd-9550 and Nesm-2853.

The lumped mass matrix, MLumped, can now be written to the Exodus file. Also, the
eigenvectors multiplied by the mass matrix, MPhi, can be written to the Exodus file too.
The corresponding ticket is Jira Compsimhd-9537.

Principal stress §8.1.19 is output to the Exodus file using the principal_stresses
keyword. Stress output includes a signed von Mises stress §8-125 and §8.1.21. It has been
added to support fatigue estimation using Rain Fall cycle counting.

If rigid body filtering is applied using FilterRbmLoad, then Force output includes the
filtered forces using syntax consistent with Sierra/SM.

Coordinate frames specified in MPCs §3-32 can be defined by either the coordinate id or
the coordinate name.

The output for the local or element coordinate frame using EOrient §8.1.43 is consistent for
all element types. The local coordinate frame can also be output using §8.1.6. This
capability is required for anisotropic materials §5.1.3.

begin contact definition §9.2.3 is more general. Sliding is supported by using the
frictionless friction model. The capability provides a linearization of equivalent
Sierra/SM syntax. In response to Jira Compsimhd-9517, Contact search failure, gap
removal diagnostic information includes an Element Quality table. This applies to tied
data too. Note that Sierra/SD reports an element condition number (greater than or equal
to one), and Sierra/SM reports the element quality (less than one), which is multiplicative
inverse of the condition number.

Sierra/SD has an undocumented interface to a code named Nemo. This release cycle,
Sierra/SD added support for two messages. The FailedElementIds message with
MPI_tag 1601 reports an integer boolean for every shared element face. It was added for
consistency with Sierra/SM. A face is either inactive, 0, or active 1. Sierra/SD reports all
elements as active. The SidesetIds message with MPI_tag 1701 reports the integer
sideset global ID associated with each coupled face. It is used for diagnostic information
between the codes. The IDs are the global ID numbers of the Exodus mesh. Further work
is needed on the case of an element face belonging to multiple coupled sidesets.

16

Deprecated Features

The Sparsepak sparse serial linear solver is deprecated and has been removed. GDSW with
the new option krylov_solver = none produces bit-wise equivalent results.

Most deprecated features are ready to be removed immediately after release: material
syntax name=string, T_current=real, s_isotropic, constraint syntax
slave_constraint_info, master, slave, property line Shys, solution case QmodalFrf,
solution case Qmodaltransient, ncfout (output4, op4) utility,
no_symmetrize_struc_acous (to be replaced by symmetrize_struc_acous).

Certain deprecated features may be removed before the next release: RBE3 option method
old|new and rtc user functions.

Newly deprecated features include: elmat, old syntax for coordinate frames, constraint
method transform.

The SD coordinate system syntax is changing and the old syntax is deprecated. To aid in
the syntax transfer, a Python script named convertCoordinateSystems is available to
convert existing coordinate blocks in an input deck to the new syntax.

$ convertCoordinateSystems FILE_1 FILE_2 FILE_3 ...

Files are overwritten by this script. A message is printed for each file touched. All inputs
other than coordinate definitions remain untouched. Comments are preserved everywhere
in the file except within the coordinate system definition. It accepts any number of file
arguments, so you can chain it together other Linux tools,

Example: In the current directory,
convert any *.inp file containing "coordinate":

$ convertCoordinateSystems $(grep -l -i coordinate ./*.inp)
Example:

Below the current directory, convert any *.inp file, recursively:
$ convertCoordinateSystems $(find . -name *.inp)

Bug Fixes

Loads are applied correctly at the junction between dead element blocks and element
blocks that are not dead for any partition of the mesh into subdomains. Jira
Compsimhd-9411 had reported an error in the case in which, for one of the subdomains
sharing the junction, all the elements attached to the junction were in dead element blocks.
The parallelWithDeadBlocks nightly verification test was added.

An Air Force code verification project found defects with Sierra/SD layered shell elements
(Jira Compsimhd-9822). First in a shell element with one layer the layer keyword is
redundant and optional. The incorrect behavior, now fixed, was that a single-layer shell

17

with a non-trivial fiber orientation and without the layer keyword, Sierra/SD incorrectly
used trivial fiber orientation. A unique attribute value can be specified for each element in
an element block in the Exodus file. If specified in the input deck, then an element
attribute becomes a block parameter. For block parameters a single value is applied to all
the elements in the element block. For layered shell elements thickness and fiber
orientation attributes in the Exodus file were considered to be block parameters. One
value was applied to all the elements in the element block. This is now fixed. The
layerShells test was added to cover these cases.

Jira Compsimhd-9343 does not involve a code defect, but is notable due to reporting
incorrect results for a transient simulation. It is important to bear in mind that some
solution cases are reliable only if used correctly. In this case users are expected to select
sufficiently small step sizes and linear solver tolerances.

Multiple users had trouble using the SEACAS tool Aprepro. All issues have been resolved.

Issues using tied data and begin contact definition have continued, leading to usability
improvements of begin contact definition. The gap removal QUIVER video
https://snl-wiki.sandia.gov/display/CKB/How-to+articles is on tied data and begin
contact definition.

1.10. Release 4.58

Deprecated Features

Algorithmic terminology referencing master/slave has been changed. The purpose is both
to increase technical clarity and use more inclusive terminology. Most of these changes
effect documentation only. One behavior change is that the output variable
’slave_constraint_info’ has been deprecated use ’constraint_info’ instead. Updates have
also been made to the exodus field names ’constraint_info’ output produces. Additionally,
master/slave references in the ’contact definition’ and periodic boundary condition
capabilities have been updated to be consistent with Sierra/SM terminology in the
equivalent capabilities.

Previously deprecated features have been removed.

• Output warninglevel cannot be an integer,

• solution methods blk_eigen and old_transient,

• FETI-DP linear solver & option rbm_tol_svd,

• history and frequency output option auto-join,

• patch negative elements (parameter),

• exodus_file & restart_file functions,

• Eigen option nmodes_acoustic,

18

https://snl-wiki.sandia.gov/display/CKB/How-to+articles

• spherical_wave option point_source_origin,

• planar_step_wave option C0,

• tiedjoint options edge tolerance and Newton tolerance.

• Boundary conditions smooth angle, smoothing distance, smoothing resolution,

• echo timing.

New Features

Sierra/SD supports coupled electro-mechanical physics in order to simulate the
electro-mechanical behavior of piezoelectric materials when subjected to an electric field or
mechanical stress. This support includes static, transient, Eigen, and direct frequency
response solution methods, piezoelectric and dielectric material models, and electric
potential and surface charge boundary conditions. For the inverse solution methods,
electro-mechanical physics enables the user to define experimental data in terms of
measured voltages.

A new option has been added to contact definition to remove contact constraints based
on an exodus mesh variable. The target use case is removal of open frictional constraints
based on a solid mechanics preload. See Section 9.2.1 for details.

Output of reaction and constraint forces for static and transient analyses is a production
feature.

A new output relative_disp is available to track the relative displacement between the
ends of a Joint2G. The output contains a statistical description of the gap for modal
random vibration or a numerical value for the gap in Eigen, static, and transient analysis.
See Section 8.1.40.

An XML description of the valid commands can be generated with a –create-xml
command line argument. The primary purpose of this file is to provide a description of
valid command lines to SAW.

A conical coordinate system is available. See 3.7.

It is possible to connect multiple tied joints to the same block.

All element types may use temperature dependent material properties. Previously only
solid elements could use the temperature dependent properties.

A new capability was added to scale density by block. See 5-91.

The line weld has an option to either remove or not remove gap in the constraints it
generates.

Syntax that matches the Sierra/SM piecewise linear function is supported in Sierra/SD.

19

The documentation has been reorganized following.60 The Table of Contents and Index
have been rewritten to make finding information easier, especially for new users.

Bug Fixes

The cbmap MATLAB format superelement output has been corrected. Previously this
map was missing rows corresponding to internal degrees of freedom.

Multiple bugs have been corrected in the Qmodaltransient and QmodalFrf capability
relating to scrambled output or inconsistent use of modal filters. The Qmodalfrf capability
is expected to be deprecated in a future release in favor of a faster Modaltransient and
ModalFrf capabilities.

Several robustness improvements have been made to the FilterRbmLoad option. It works
properly with both static and transient analysis.

The buckling capability works with gravity loads and constraints.

Modal random vibration properly handles coordinate system in the frequency file
outputs.

The element quality metric printed to the log file has been improved. Tetrahedron quality
was off by a factor of three, and it could be misreported for elements with small volume.

A geometric_rigid_body_modes analysis interacts more correctly with the eigenvalue
decomposition.

An error was fixed where a single layer hexshell with temperature dependent material
properties would use incorrect material properties.

The Navy triangular shell finite element incorrectly transmitted loads. Only the Navy uses
the element. Correcting the element lead to re-blessing at least five regression tests.

Syntax and Defaults Changes

Modal random vibration truncation method default has changed from displacement to
none. The displacement truncation could truncate modes important to the solution in
some cases, such as modes that are localized to a small portion of the domain.

20

2. How to Run Sierra/SD

Sierra/SD provides a massively parallel implementation of structural dynamics finite
element analysis. This capability is required for high fidelity, validated models used in
modal, vibration, static and shock analysis of weapons systems. General capabilities for
modal, statics and transient dynamics are provided. The Sierra/SD software evolved from
the “Salinas” package.

Sierra/SD tutorials for new users are available
https://snl-wiki.sandia.gov/display/CKB/How-to+articles

This section describes the command line arguments and workflows typical of Sierra/SD
analysis. This section is primarily applicable to analysts at Sandia. Sections 3 through 9
describe Sierra/SD capabilities invoked via the input deck. Section 10 provides example
problems.

2.1. Accessing Sierra/SD

At Sandia Sierra is installed on many Unix-based High Performance Computing (HPC)
systems. This includes dedicated and shared blades, shared computational clusters (e.g.
cee-compute) and large queued clusters (Institutional Clusters such as Eclipse). To run
Sierra applications you need to have access to one of these machines. You also must
request “SIERRA Analysts Code Access” through WEBCARS.

2.2. Modules and Executables

Configuration of Sierra applications is controlled via modules. The first step to running a
Sierra application is to load the appropriate module for the desired version. For example:

workstation_prompt> module load sierra

Several modules are commonly used.

• sierra: This is the latest released version of Sierra and is generally the recommended
version to be used.

• sierra/X.YY: This will load a specific Sierra version, for example “sierra/4.58”.
Sierra releases are done twice a year and generally the previous four releases are
available.

• sierra/sprint: This is the latest “sprint snapshot” version of Sierra. A new sprint
snapshot is installed every three weeks. Sprint snapshots contain the latest developed
features but have less quality assurance testing than the main releases. Sprint
snapshots should primarily be used to do beta evaluation of newly developed features.

21

https://snl-wiki.sandia.gov/display/CKB/How-to+articles

• sierra/daily: This is the development version of Sierra built on the previous night.
No quality assurance is done on this version. This version should only be used when
directly working with the development team to help evaluate a bug fix.

2.3. The Sierra/SD salinas Executable

The primary executable for running structural dynamics analysis is called “salinas”. It uses
a text format input deck to configure a simulation. This users manual primarily describes
the input deck options and format. An example invoking a basic serial Sierra/SD analysis
is:

workstation_prompt> module load sierra
workstation_prompt> salinas -i input.inp

The commonly used command line arguments to the salinas executable are given in
Table 2-2.

Table 2-2. – Command Line Options Part One
String Descriptor
-h Prints help message
-i Path and name of the input deck. The input deck is traditionally given

the extension .inp. However, any name is allowed. If no ’-i’ is given
the last argument of the line is assumed to be the input deck name.

-l or -o Name for the output log file. By default, output to
<input_deck_name>.rslt in serial or <input_deck_name>_0.rslt in
parallel.

-n Do not overwrite any existing output log and diagnostic .dat files. Do
write a new file appending a 1, 2, 3, etc. to the name.

-d Change working directory for the run. Equivalent to cd to that direc-
tory and running salinas

–define Define variables for Aprepro [53] pre-processing of the input deck. See
Section 3.1 for details

22

Table 2-3. – Command Line Options Part Two
String Descriptor
--check-syntax Do initial syntax checking of the input deck and then stop before read-

ing mesh or doing any large calculations. This option can be used to
debug model input in serial prior to submitting to a queued system.

–beta Enable use of ’beta’ capabilities. These are capabilities in active de-
velopment, are subject to change without notice, and may have less
rigorous testing.

-nt Number of threads to use per MPI rank. Using more threads than phys-
ical cores (i.e., hyper-threading) may result in decreased performance.
This option is only supported on a few platforms. Ask the Sierra/SD
team for more information.

–ndevices Number of GPUs to use per hardware node. This option is in develop-
ment and not ready for general use.

–create-xml Create an xml format command specification. Primarily for interacting
with graphical input file creation utilities such as SAW. [51]

2.4. MPI Parallel Execution

Sierra/SD may be run either in serial or in parallel with MPI. In parallel Sierra/SD has
demonstrated efficiency to thousands of processor cores.13 Some basic work-flow examples
for parallel execution are provided below. Information on using on the current platforms is
available at High Performance Computing website https://computing.sandia.gov

Additional steps are necessary to execute in parallel instead of serial. The following
examples use the input deck input.inp and the Exodus mesh file mesh.exo.

2.4.1. Number of MPI Processes Needed

MPI is an optimization that can decrease run time. The configuration of Sierra depends on
the architecture. A central processing unit (CPU) has multiple cores and possibly a
graphical processing unit (GPU) accelerator. These notes only discuss the CPU. A user
must know one thing about the CPU, the number of cores per node (or processor). One
way to determine the cores per node is to use the lscpu command and look for Core(s)
per socket. Another way is cat /proc/cpuinfo. Look for cpu cores.

Running Sierra/SD in parallel requires the user to specify how many MPI ranks will be
used. Choosing the number of cores so that the number of elements per subdomain
approximately 5000 typically works fine. Generally a computational “node” will run several
MPI ranks and many computational nodes may be used simultaneously. Selecting the
number of ranks to use is based on three concerns. First, each computational node has
finite memory and enough nodes must be used to fit the problem in memory. Second, use
of more MPI ranks and more computational nodes can reduce time to solution. Third,
efficient use of machines should be considered as no analysis will achieve perfect parallel

23

https://computing.sandia.gov

efficiency and using many computational cores on a small problem may provide sub
optimal machine utilization. The appropriate number of MPI ranks to use is primarily
determined by how many degrees of freedom (DOF) are in the model. Though machines
are variable Table 2-4 can be used as a rough guide help guide selection of the number of
MPI ranks and thus computational cores to use.

memory per core dofs per core Num Cores Needed
1GB 15,000 dofs/15,000
2GB 30,000 dofs/30,000
4GB 50,000 dofs/50,000
8GB 70,000 dofs/70,000
16GB 90,000 dofs/90,000

Table 2-4. – Determining Number Of Processors Needed.

Memory use depends on a variety of factors including the element type used, the solution
strategy and the output processing. The numbers in the table are generally conservative.
Fortunately, in most cases it is not critical and compute node memory suffices.

For high memory use analyses it may be necessary to run Sierra/SD with half the
maximum number of cores available per computational node. The reason is that using half
MPI ranks doubles the memory assigned to each rank. As there is significant memory
overhead for an MPI rank, memory limited analyses will benefit more by adding more
memory to each rank than spreading the mesh to a larger number of ranks.

2.4.2. Mesh Decomposition

If running in parallel, prior to running the salinas executable first the Exodus mesh file
must be parallel partitioned. Mesh decomposition involves dividing the input mesh file into
several pieces, one of which will be read by each MPI rank. Several tools exist for this
mesh decomposition step, the recommended tool is stk_balanceparallel
computing!stk_balance. For more details on stk_balance see.61

In the next example stk_balance is executed on a non queued blade.

workstation_prompt> launch -n 16 stk_balance mesh.exo split

This command will decompose the mesh file into 16 parts with names like mesh.exo.16.00,
mesh.exo.16.01, etc. and place those spread files into the directory ’split’. Storing the
decomposed mesh files in a separate directory is optional. The location of the input mesh
file is specified via commands in the input deck as described in Section 3.2.

24

2.4.3. Running the Sierra/SD Executable in Parallel

Here is a way to run Sierra/SD on 16 MPI ranks.

workstation_prompt> launch -n 16 salinas -i input.inp

The input file contains the location of a partition of the mesh file into 16 subdomains. For
queued systems, extra commands are needed to access the queue. See Section 2.6 for more
examples on different systems.

2.4.4. Post Processing in Parallel

In parallel Sierra/SD creates several output files as described in Section 8.

• log: In serial the default log file name is <input_deck_name>.rslt. In parallel the
default name is <input_deck_name>_0.rslt. This is a text output file giving vital
information about the run. The ’_0’ indicates the is file written by processor zero.
Information relevant to the global model behavior is accumulated to processor zero
for output.

• Mesh based Exodus: The output name will depend on the structure of the input
deck, but usually follows a pattern like
<mesh_name_base>-out.<mesh_name_extension>. This includes mesh based
information such as nodal displacement. Similar to the decomposed input mesh this
output Exodus file will be written as a decomposed file with one portion per MPI
rank. Some post-processing tools such as Ensight or Paraview can read the
decomposed Exodus file directly. For other tools the file must first be combined to a
single file with the SEACAS tool ’epu’.25

• Diagnostics: This could include detailed information from the solver
(dd_solver.dat) or other text and MATLAB format output files.

2.5. File system concerns

Sierra/SD can output large files and works best when writing to fast output systems.
Running analyses on scratch drives such as ’/nscratch’ on HPC system or local ’/scratch’
on blades are ideal. Large shared disks such as ’/gpfs1’ are viable though may incur some
runtime overhead. Drives that are not mounted by computational nodes of HPC systems
such as /tmp should be avoided.

25

2.6. Workflow Examples

There are many ways to run Sierra/SD depending on the analysis size and machine used.
Several common examples are presented.

The next commands run a serial job on a blade and examine the log file.

workstation_prompt> module load sierra
workstation_prompt> salinas -i input.inp
workstation_prompt> cat input.rslt

Run a parallel job using four processors of a blade. Look at exodus output results via the
textual output query tool explore.54

workstation_prompt> module load sierra
workstation_prompt> launch -n 4 stk_balance mesh.g
workstation_prompt> launch -n 4 salinas -i input.inp
workstation_prompt> module load seacas
workstation_prompt> epu --auto mesh-out.g.4.0
workstation_prompt> explore mesh-out.g

Run a parallel job on a queued system using 72 MPI ranks and 2 computational nodes
manually calling sbatch, then combine to a single file, all with a single queue submission.
In this case assuming a machine like Eclipse where each computational node can run up to
36 MPI ranks. The SEACAS tool ’epu’25 can run in parallel, but is usually run on only a few
MPI ranks.

#!/bin/bash
launch -n 72 stk_balance -i mesh.g
launch -n 72 salinas -i input.inp
launch -n 8 epu --auto mesh-out.g.72.00

Command 2.1. submit.sh

workstation_prompt> module load sierra
workstation_prompt> module load seacas
workstation_prompt> /usr/bin/sbatch --account=<acct_id> --nodes=2

--time=4:00:00 ./submit.sh

Run a parallel job on a queued system using 8 MPI ranks spread to 4 computational nodes
get access to more memory per computational process. In this case assuming a machine
like Eclipse where each computational node defaults to 36 ranks.

26

Contents of submit.sh
#!/bin/bash
launch -n 8 stk_balance -i mesh.g
launch -n 8 salinas -i input.inp
launch -n 8 epu --auto mesh-out.g.8.0

workstation_prompt> module load sierra
workstation_prompt> module load seacas
workstation_prompt> /usr/bin/sbatch --account=<acct_id> --nodes=4

--time=4:00:00 ./submit.sh

Run a parallel job on a queued system using the “sierra” script. If the mesh file was not yet
decomposed for parallel execution the sierra script will automatically decompose it prior to
running the salinas executable. Epu would run in serial on the HPC head node. Note the
sierra script can be used to submit Sierra/SD analyses. However, the sierra script ’–post’
option is currently not functional with Sierra/SD (for other Sierra tools the post option
automatically combines output mesh files, similar to the below ”epu” command.) The
sierra script can potentially be helpful to translate the number of MPI ranks to the correct
number of nodes to use on a given machine. Additionally, the same sierra script submission
command can be used on queued HPC systems and non queued blades and clusters.

workstation_prompt> module load sierra
workstation_prompt> sierra -j 72 -T 4:00:00 salinas -i input.inp
workstation_prompt> module load seacas
workstation_prompt> epu --auto mesh-out.g.72.00

Run coupled Sierra/SD Fuego analysis on a non queued system for fluid structure
coupling. In this case salinas will use 8 MPI ranks and fuego will use 16 MPI ranks for a
total use of 24 MPI ranks. Note, this is an advanced use case.

workstation_prompt> module load sierra
workstation_prompt> launch -n 8 stk_balance salinas_mesh.g
workstation_prompt> launch -n 16 stk_balance fuego_mesh.g
workstation_prompt> launch -n 8 salinas -i salinas_input.inp

--fuego-coupling : -np 16 fuego -i fuego_input.inp

2.7. Thread Parallelism

In addition to decomposition based MPI parallelism, Sierra/SD also supports thread
parallelism on some platforms (currently Trinity and GCC development platforms).
Threads are activated by the command line option “-nt <numThreads>”. The
‘numThreads’ given will be the number of OpenMP threads to use on each MPI rank.
Threaded execution is most valuable on large models. Using a mixture of thread

27

parallelism and MPI parallelism can give optimal performance when the number of MPI
processes required would otherwise be very large. As a rule of thumb thread parallelism
will provide benefit when exceeding about 200 MPI processes or when more cores are
required than MPI ranks to obtain more memory. When using thread parallelism, the
number of threads used times the number of MPI ranks used should be setup to be equal
the total number of processor cores available on compute nodes.

Note: while the number of threads used in Sierra/SD is controlled by the command line
option “-nt”, it is recommended that the user also set the environment variable
‘OMP_NUM_THREADS’ to be the same value. While Sierra/SD does not depend on
‘OMP_NUM_THREADS’, there might be other aspects of your workflow that would, and
so we recommend setting both to be consistent. In fact, Sierra/SD will output a warning
if ‘OMP_NUM_THREADS’ does not match the value set by “-nt”.

2.8. Troubleshooting

A variety of issues can cause an analysis to fail. There are still bugs in the Sierra/SD
software, and these will continue to be found. However, most problems are identified with
problems in the model or other input to the software. This section may help to identify
these issues with the goal of completing the analysis properly. The best troubleshooting
strategy is to try to eliminate the modeling issues, and only then treat the problem as a
potential bug.

Users can troubleshoot Sierra/SD issues through stand-alone tools or using Sierra/SD
capabilities. The following sections will describe some ways to do this. First stand-alone
tools are described. Second ways of using Sierra/SD capabilities to troubleshoot are
described.

Queuing systems are inevitable in high performance computing. Any extra step lowering
the risk of there being a mistake in the input deck is worthwhile.

2.8.1. Stand-Alone Tools

Currently, two tools exist which can help the user debug their mesh file, i.e., Exodus file:
Explore and cubit.

2.8.1.1. Explore Explore is an ACCESS/SEACAS utility that can be used to
interrogate the Exodus file. One of the commands in Explore that can be used is check.
It is used as follows:

prompt> explore cube.exo
.
.
EXPLORE> check

28

Database check is completed

EXPLORE>

If there are any warning or errors, they will appear before the Database check is
completed message.

2.8.1.2. Cubit The Cubit team has developed a GUI-based tool named cubit. It can be
used to visualize mesh quality parameters of the Exodus file. For questions about Cubit,
please contact the Cubit team at cubit-dev@sandia.gov.

2.8.2. Using Sierra/SD To Troubleshoot

A ’model_check’ analysis 4.8 report diagnostic information about model setup. It is
optimized to avoid computationally expensive operations, and can be run in serial. For
example, the information can help pinpoint areas of the model causing linear solver issues.
Users are advised to do some sort of model checking before submitting jobs in long queues.
Available model check information includes kdiag, mlumped, constraint_info, and
ElemEigChecks.

Syntax checking 3.3 is helpful.

The user has to take additional steps before executing the parallel version of Sierra/SD.
One of the steps is to run stk_balance to decompose the finite element model. Using the
Exodus file and the load balancing file, the next step is to run nem_spread to create the
partitioned files on the parallel platform where Sierra/SD will be executed. Finally, the
commands needed to run Sierra/SD on the parallel platform need to be learned so that
execution of Sierra/SD can begin. Many of these steps can cause frustration to the user,
but problems with any of these steps are often easily addressed.

These steps are due diligence before running a large model on a queued system. Running
the large model on a smaller computer (without a queue) to confirm that the simulation
fails in the expected way (by running out of virtual memory) is also worthwhile.

The output includes the Approximate Matrix infinity norm ratios table. This table shows
information about the stiffness, mass and dynamic matrices. The value shown is the ratio
of the largest diagonal entry to the smallest diagonal entry. If the matrix has a 0 on the
diagonal, then 0 is shown.

29

2.8.3. Modal Analysis

It is possible for the eigen solution method (discussed in Section 4.9) to diverge.

Section 3.3 mentions the eig_tol parameter. The default value is about 10−16 (for the
modal solution case). Adequate modes can be determined with much larger values of
eig_tol. Values such as 10−8 are reasonable.

At times an analyst may choose to use the eigen method to diagnose a problem. This can
be done by using as large a value of eig_tol as is needed. The number of modes would
also be as small as needed. After the issue is resolved, if eigenvectors are still needed, don’t
forget to reset eig_tol to a small value.

The modal analysis algorithm depends on a linear solver, and assumes that the linear
systems are solved accurately. The shift is almost always negative. Increasing the
magnitude of a negative shift forms linear systems that are easier to solve, and makes the
eigenvalue problem harder to solve. The iterative linear solver (GDSW) parameters trade
off between speed and accuracy. For example, a small value of the solver_tol increases
accuracy and computational expense. Solving the linear system more accurately makes the
eigenvalue problem easier to solve.

2.8.4. Evaluating Memory Use

The Sierra/SD software tends to use a lot of memory. Matrices are generated and solved,
and while this is often the fastest method of solution, it results in large memory demands.
Parallel computing has its own issues for memory use.

Memory use diagnostics can be requested in the “ECHO” section of the input (see Section
8.8).

2.8.5. Identifying Problematic Subdomains

The partition of a finite element mesh into subdomains may be visualized by rejoining the
partitioned files into a new file using epu with the –add_processor_id option.

2.8.6. Limitations of SD Finite Elements

Element quality is a function of both the element geometry and the type of element. The
Hex8, Wedge6, Tet4, Tria3, and QuadT elements implement a condition number. Note
that the QuadT consists of two triangular elements. See section 8.1.12 for more details.

Overall second and higher order finite element methods are much less sensitive to element
quality than low order methods. However, there is a tipping point. A high order element
will invert before57 the corresponding low order element. With that in mind, it is
noteworthy that Sierra/SD ignores this issue.

30

2.8.7. Problematic Elements and Connectivity

Many problems are caused by “bad” elements. Following are a few issues that come up
periodically.

Rotational Invariance can be lost for certain elements such as springs if they are not of
zero length. The spring shown in Figure 2-1 is invariant to rotation about the x-axis,
but not invariant to rotation about y or z. If we consider an undeformed rotation
about the center of the beam along the z axis we would find that uy(1)< 0 and
uy(2) =−uy(1). If the spring has KY 6= 0, then this undeformed rotation results in
strain energy, E = 2 KY u2

y. Thus, the rigid body rotation is no longer a zero energy
mode.

This is important for a variety of line type elements including spring, Joint2G and
gap elements.

Figure 2-1. – Single Spring element.

x

y 1 2

Bad element shape is a major source of problems. For example, we have examined
models that have “triangles” where one side is 1/200th the length of the other sides.
This produces poor element matrices. In some cases this can destroy the condition of
the entire system. Such elements can sometimes be found using the kdiag output
option described in Section 8.1.52.

Decomposition weakness The broken figure is an issue for trusses (or rods) and some
other elements. The truss in the top part of Figure 2-2 is self-sustaining when made
of truss elements. However, because truss elements have no rotational stiffness, the
decomposed model in the lower part of the figure contains mechanisms. Note that
there is no way to decompose the model without introducing such mechanisms.

Truss elements can be used in Sierra/SD. Simulation issues have been traced to
poor decompositions in the past. In practice these issues have not come up with
stk_balance (see 2.1).

Poor Connectivity A structure that has poorly connected regions can be difficult to
analyse. If elements have not been properly equivalenced, there can be thousands of
zero energy modes in the model. Sierra/SD can identify up to a few dozen
redundant modes in the best of cases.

31

Figure 2-2. – Truss Decomposition Issues.

complete truss

decomposed model

Poor Units In models with shell elements, rotational degrees of freedom are active. The
rotations scale like the displacements divided by the length. An unfortunate choice of
length unit will cause ill conditioning. In theory a unit of length that is much too
large could lead to inaccurate rotations. And a unit of length that is much too small
could lead to inaccurate displacements. This issue has not been investigated. A
smaller linear solver tolerance would generally mitigate the issue.

2.9. Over-determined Constraints and Loss of Rigid Body Modes

Building models with tied surfaces or other multi-point constraints (MPCs) may involve
more than one iteration. Computing eigenvalues is a common way to check a model. Gap
Removal is a light-weight solution method 4.34 enabling users to obtain information about
their tied surfaces earlier in the process, before having to do all the work necessary to
successfully set up, submit, and run the massively parallel simulation of the modes.

Solving eigenvalue problems has issues of its own. The eigenvalue decomposition of a model
with no prescribed boundary conditions would generally be expected to produce six rigid
body modes. A variety of internal constraint issues can cause loss of these rigid body
modes. Such artificial constraint of a model can substantially degrade the quality of the
overall solution. Sierra/SD has several internal correction algorithm and warnings to
detect and repair issues, such as GDSW con_tolerance described in Section 3.5.
However, care should be taken to minimize the complexity of constraint equations.
Generally having different types of constraints using the same nodes can be potentially
problematic. The following are the types of constraint combinations are known to be
particularly problematic:

• Intersection of tied data or contact constraints where one node is tied to two or more
faces.

• Chains or cycles tied/contact constraints. This could involve a node on side ’A’ of an
interface being tied to faces on side ’B’ and simultaneously nodes on side ’B’ being
tied to the faces of side ’A’. This is especially problematic in self contact type
situations (a tied surface folding over on itself.)

• Intersection of tied/contact constraints and rigid set constraints where a tied node of
the node-face constraint is also part of the rigid set.

32

• Manually specified MPCs that form long chains, cycles, or extensive intersections.

• Intersection of complex manually specified MPCs with any other type of constraint
such as rigid set or tied data.

33

3. General Commands

No one seems to know what makes a command general. That is why the explanation is
missing here.

3.1. Input deck format

The input is a finite element mesh (in Exodus format) paired with an input deck setting
both the materials used in the model and what to simulate. Once mesh and materials are
set, any type of analysis can be performed. An input deck (or text input deck) consists of
sections. The order of the sections does not matter, nor does the order of the directives
within a section. Commands are case-insensitive.

The Sierra tools related to Sierra/SD include the Cubit geometry and mesh generation
toolkit, the ACCESS/SEACAS tool suite for manipulating exodus files and the Nasgen
program for convert NASTRAN files to both the exodus file and the text input deck.

Traditionally the sections of an input deck are ordered so that directives that are most
likely to change are near the top. The solution section selects an analysis type. The file
section sets the Exodus file name. An Exodus file for a structural model typically
contains many element blocks. The input deck must have a block section for each element
block. And a material section specifies each of the materials used in one or more element
blocks.

Typically, the input deck has an extension of .inp, although any extension is permitted. If
the .inp extension is used, Sierra/SD may be invoked on the input without specifying
the extension.

The input deck is logically separated into sections. Each section begins with a keyword
(Solution, block, etc), and ends with the reserved word end . Words within a section are
separated with “white space” consisting of tabs, spaces, and line feeds.

Comments

Several options are available for a comment specifier. These are listed in Table 3-5. For any
string used to specify a comment, all characters following the comment string are skipped.
1

1To be safe, define comments as one of the allowable comment characters (i.e. “//”) followed by a space.

34

Table 3-5. – Comment String Options.
String Descriptor

// C++ style line comments.
/*...*/ C++ style block comments.
Line comment. Used in scripts and Sierra input.
$ Line comment. Aprepro [53]/SEACAS default.

Meta-characters

Sierra/SD supports the use of several meta-characters in the input deck. They are listed
below, along with what they represent.

%P The number of processors for the run.

%B The base file name. For example, if the input deck is example.inp, %B will be
replaced with example.

%T The Sierra/SD start time. This is the same time that is echoed to the screen at the
beginning of the run, but in a shorter and more file-friendly format. For example, if
the Sierra/SD start time was Tue Sep 24, 2019, 16:05:41, %T will be replaced
with 2019_09_24_16_05_41.

Skipping Sections

Occasionally an entire section may need to be commented out. This may be done using
“//” on each line of the section, or surrounding the section with the block comment
characters “/*” and “*/”. A third way to comment out an entire section is to begin it with
double “$$” characters. In the following, block 1 is commented out, and block 4 is active.

$$ BLOCK 1 // this section skipped
material 1

END

BLOCK 4 // this section valid
material 1

END

Except for special cases such as file names, the input deck is case-insensitive. Either the
single quote ’ or the double quote " may be used throughout the input to keep multiple
words together (e.g. a name or title). Quotes may be nested by using both single and
double quotes, as in either ’a string with “embedded” quotes’ or “a string with
’embedded’ quotes”.

35

Preprocessing with Aprepro

The Algebraic PREPROcessor, aprepro, in the ACCESS/SEACAS tool suite can be run
either standalone, or as part of the analysis. The use of Aprepro is enabled by default, but
can be disabled with the –noaprepro command line flag. Aprepro can be used for a variety
of purposes.

1. Define variables on the command line. This is especially useful for automated runs
such as optimization and uncertainty quantification.

2. Simplify input by allowing algebraic expressions, e.g. Y={ 4 * 3}.

3. Automatically include text of other files.

4. Manage various systems of units, e.g. Y={ 10 * psi }.

For details on Aprepro in general, and for standalone documentation, please refer to the
SEACAS documentation.53 All the rules for command line substitution apply to the built-in
capability. Definition of command line variables during analysis requires specification of a
command line argument, –define, as used in the example.

sierra salinas - -define "E_val=10E6 nu_val=0.30" -i example.inp

In this example, the text “E_val” in the input deck, example.inp will be replaced with
“10E6”. Likewise, “nu_val” will be replaced by 0.30.

Including Files

The input parser supports nested includes using Aprepro. Files may be included to any
depth.

{include("english_materials")}

The include command may occur anywhere on the line (though for readability and
consistency we recommend that it be the start of the line). Case sensitivity will be
preserved.

Input Summary

Summarizing, a minimum of two files are needed to run Sierra/SD, namely, a text input
deck, e.g. example.inp, and an Exodus input deck,44 e.g. example.exo, which contains
the finite element model. The finite element model is specified in example.inp as the
geometry file (see Section 3.2).

Each of the Sierra/SD input sections is described in the following section.

36

Integer List An integer list may be required as a parameter for a number of keywords.
The list is of a format similar to that of MATLAB. A simple list such as “1,2,3,4” is
possible. One may also provide a sequence such as “1:4” which is completely equivalent to
the previous example. A step value may also be provided, as in “2:2:20”. The second term
between the colons is the step. For this example, we list all even values between (and
including) 2 and 20. Such combinations can also be combined, as in
“1,2,3:2:7,11,13,17,19”.

It is recommended that if such lists have spaces they be placed in (single or double) quotes,
i.e. ’1 2’ is preferred, but 1 2 without quotations is also acceptable.

3.2. Input Mesh Geometry File

Disk files names are specified in the file section. The parameters for the file section
are,

Option Description
geometry_file Indicates which Exodus file to use

user subroutine file File containing user subroutines, currently relevant
only to user mount element

transfer_source_file Alternative file from which to read nodal
element data from the exodus mesh for loads,
initial conditions, etc.

3.2.1. Geometry_file

The geometry file is used for input of the mesh geometry including the nodes, elements,
connectivity and attributes. It is typically a binary Exodus file.

3.2.1.1. Multiple processors In a multiprocessor environment, the file name is
determined by appending the “dot qualified” processor number and processor id to the
geometry file specification. 2 For example, if the user specifies,

geometry_file=’temp1/example.par’

There are 4 processors, then the following files will be opened.

2In other words, the user specifies the path name of the first parallel file, but omits the processor count
information. This method permits specification of the file name independent of the number of processors
used.

37

temp1/example.par.4.0
temp1/example.par.4.1
temp1/example.par.4.2
temp1/example.par.4.3

In this example the input file is not in the current working directory.

Specifying the Exodus mesh input file in a way that does not depend on the number of
input files (or MPI ranks) saves time in the long run. If the input file is example.exo and
the partitioner is configured to generate the files ’example.exo.4.0’,. . . then the same
Sierra/SD input deck works in serial and in parallel.

3.2.1.2. Single processor On a single processor, the file is not “spread”, and the full file
path is provided. A representative serial file section follows.

file
geometry_file example.exo

end

Note:

• A single processor run, even using MPI, will not append the number of processors
and processor ID to the file name.

• Section 2.1 shows the steps involved in the parallel execution of Sierra/SD.

3.2.2. Exodus Database Naming Conventions

There are three basic conventions that apply to user input for various command lines. The
conventions concern side sets (surfaces), node sets and blocks.

First, the Exodus side set is referenced as a surface. In Sierra, a surface consists of
element faces plus all the nodes and edges associated with these faces. A surface definition
can be used not only to select a group of faces but also to select a group of edges or a
group of nodes that are associated with those faces. For nodal boundary conditions that
use the surface specification, all the nodes associated with the faces on a specific surface
will have this boundary condition applied to them.

A group of elements can also be used to select other mesh entities. In Sierra, a block
consists of elements plus the associated faces, edges, and nodes. The block and surface
concepts are similar in that both have associated derived quantities.

Blocks, sidesets, or nodesets can be grouped together into assemblies.55 However, an
assembly must contain entities of the same "type", where "type" is either a block, sideset,
nodeset, or another assembly. An assembly cannot contain itself, either directly or
indirectly. Currently, not all tools support assemblies. One way to create them is with

38

io_modify. In addition, assemblies can be created directly in the Sierra/SD input deck
using the ASSEMBLY section (section 3.2.3).

The specification for a surface identifier can have the form surface_id, where id is the
integer identifier for the surface. Surfaces can also be identified by the id alone. For
example, if the side set identifier is 125, the surface could be referred to as surface_125 or
simply 125. It is also possible to name a surface in some mesh generation programs, and
that name can be used in the input file. The specification for element blocks and nodesets
are defined similarly (“block”_id/id/name and “nodelist”_id/id/name). Assemblies can
also be specified similarly (“assembly”_id/name), but specification of assemblies by id
alone is not allowed. Assemblies can be substituted anywhere in the input deck where a list
of blocks, sidesets, or nodesets is expected. If the assembly itself contains sub-assemblies,
the set of unique leaf blocks, sidesets, or nodesets will be used, depending on context.

3.2.3. ASSEMBLY section

Assemblies can be created using the ASSEMBLY section of the Sierra/SD input deck as
shown below (syntax 3.1). The assemblies created in this way can then be used elsewhere
in the Sierra/SD input deck. If an integer is given as the assembly name, then the integer
will be used as the assembly identifier and the assembly name will be assembly_id, where
id is the assembly identifier. Note that a ASSEMBLY section can only refer to assemblies
that either already exist in the input mesh or were defined in a prior ASSEMBLY section. If
an assembly already exists on the input mesh, defining it again using a new ASSEMBLY
section will result in modifying the assembly so that it contains the union of the entities in
the original and the new instance. Additionally, a warning will be printed in the
Sierra/SD results file about modifying an existing assembly.

BEGIN ASSEMBLY <string>
// exactly one of the following:

block = <list(block)>
block = all
sideset = <list(sideset)>
sideset = all
nodeset = <list(nodeset)>
nodeset = all

END

Syntax 3.1. ASSEMBLY example

3.2.4. Exodus Naming Limitations

Sierra/SD supports the use of mesh names in the input deck and lists of mesh objects. As
a result, it becomes ambiguous which keywords are mesh names and which are intended as

39

input syntax. For example, a nodeset named "fixed" creates ambiguity when the user
specifies "nodeset 1 fixed". This could mean that nodeset 1 is fixed in space, or it could
be a list of nodesets "1" and "fixed".

To resolve this ambiguity, Sierra/SD maintains a list of reserved keywords which may not
appear in the mesh. This list has over 400 entries, and changes with each release. The rules
of this list are simple; any valid syntax which appears adjacent to a nodeset list may not
appear in the mesh’s nodesets. The same rule applies to sidesets and blocks. Since
assemblies are valid in all three contexts, they inherit the restrictions of all three.

There are no keywords in the Sierra/SD input deck which begin or end with an
underscore. Therefore, "_fixed_" is a valid name for any mesh object in any context.
Similarly, "assembly_5_front" is obscure enough to be safe from this restriction.

Pure integer values are not allowed as mesh names for the same reasons. This is not a
restriction on names like "Block_5", but blocks named "5" are not allowed.

A warning is issued if reserved characters are found in the mesh names. These warnings are
not fatal, but having reserved characters in the mesh names severely limits our ability to
parse them in the input deck. The reserved character list includes comment characters
(//,/*,*/,#, and $), and special-use characters (=,’,",and :), which have extra meaning in
Sierra/SD input decks.

Since the list of reserved keywords is based on the allowable syntax in Sierra/SD, it will
change based on the current version of the code. The current list of reserved keywords for
the version of the code you’re using can be printed to screen at any time using the
“–keywords” command-line option. Additionally, the ambiguous naming checks can be
changed to a warning or ignored entirely using the reserved_keywords parameter
(section 3.3).

3.2.5. Additional Comments About Output

A text log or results file can be written for the run. Details of the contents of the results
file are controlled in the echo section (see Section 8.8). The results file name is determined
by the name of the input file, and will be in the same directory as the input text file,
regardless of whether Sierra/SD is being executed in serial or parallel. However, if
executing in parallel, using the subdomains option in the echo section allows control of the
number of results files. For example, if running on 100 processors, up to 100 result files
may be output. Using subdomains “0:2” will only output three files, from subdomains 0,
1, and 2. The default is to output a results file only for processor zero. The results file
name uses the base name of the input, with an extension of .rslt. In a parallel
computation, the results file names use the base name of the input file, followed by an
underscore and the processor number, then followed by the .rslt extension.

For calculations in which geometry based output requests are included (see Section 8), an
output Exodus file will be created. An Exodus file is a binary file (NetCDF). It contains

40

the original geometry and the requested output variables. The output Exodus file name is
determined from the geometry file name. The base name of the output is taken from the
geometry file by inserting a hyphen followed by the case name if defined, (or -out
otherwise) before the file name extension. The output Exodus file will be written to the
same directory where the geometry file is stored.

3.3. Parameters

This optional section provides a way to input parameters that are independent of the
solution method or solver. Only one parameters section is recognized in each file. The
parameters and their meanings are listed below and in Table 3-6 and 3-7. For reference,
Table 3-8 are parameters occasionally used by developers, but not recommended for
common use.

wtMass This variable multiplies all mass and density on the input, and divides out the
results on the output. It is provided primarily for the English system of units where
the natural units of mass are units of force. For example, the density of steel is
0.283 lbs/in3, but “lbs” includes the units of

g = 386.4in/s2.

Using a value of WtMass of 0.00259 (1/386.4), density can be entered as 0.283, the
outputs will be in pounds, but the calculations will be performed using the correct
mass units . Sierra/SD, like most finite element codes, does not manage the units of
the analysis. The selection of a consistent set of units is left to the analyst. For
example, if the analyst uses the SI system (Kg, m, s) the units of pressure must be
Pascals. Frequencies are reported in Hz. For micromachines these units are awkward.
It may be better to use units of grams, millimeters and microseconds. The analyst
must ensure that all material properties and loads are converted to these units.

Some examples of useful units are shown in Table 3-9.

NegEigen Unconstrained structures have zero energy modes which may evaluate to small
negative numbers due to machine round off. The eigenvalues and associated
frequencies are reported as negative numbers in the results files. However, many
post-processing tools (such as Ensight) require non-negative frequencies. By default,
Sierra/SD converts all negative eigenvalues to near zero values in the output
Exodus files 1. To retain the negative eigenvalues in the output file, select parameter
NegEigen.

output_sideset_data This option turns on sideset output for any requested element
output. Currently, sideset output is only enabled for (centroid) volumetric stress and
strain (sections 8.1.16 and 8.1.18).

1Because many post-processing tools are written for transient dynamics, they expect monotonically increas-
ing, positive values for the time. Since eigenvalues are written in the time columns of the output file,
they are converted to be monotonically increasing, positive values. Note that the numerically computed
eigenvalues are also stored as global variables in the file

41

Keyword Type Default Description
AllowExodusAttributes bool true Seek undefined attributes on the mesh
AllowExodusDistFacts bool true Apply distribution factors from the mesh
AllowInvalidExodusParts bool false Ignore error due to requesting an

invalid Exodus part (e.g. sideset/block)
ComplexStress yes/no no output complex stress in FRF solutions
condition_limit Real 1e6 element quality output control
constraint_correction yes/no no orthogonalize constraints to RBMS
defaultSpecificHeat Real none material specific heat
DoInitialMassSolve bool true transients: perform initial mass solve
eig_tol Real auto Eigenvalue tolerance
eigen_norm string mass “visualization” or “unit”
energy_time_step int 1 input of energy data
energy_exo_var string TEMP Exodus energy variable name
FilterRbmLoad noFiltering noFiltering rigid body components of loads to filter

allStructural
rotationOnly

ignore_gap_inversion bool false Ignore element quality changes due to
gap and overlap removal

Info int 1 screen output control
MatrixFloor Real 0 control of matrix fill
MaxmpcEntries int 10,000 maximum # entries in any mpc
MaxResidual Real 1 maximum residual for eigen
MortarMethod string dual dual or standard mortar method
MFile_format string sparse_function control output format for MATLAB
NegEigen none negative eigenvalue flag
nonlinear_default yes/no yes nonlinear element blocks
num_rigid_mode int 0 number of system rigid body modes
output_sideset_data bool false Output element values on all sidesets
RandomNumberGenerator string “rand” or “test”
RbmTolerance Real 1e-10 tolerance for rigid body zero
RemoveRedundancy yes/no yes filter constraints
reorder_Rbar none constraint reordering flag
RequireMatchedBlocks string ignore “ignore”, “warn”, or “fatal”
SkipmpcTouch none control of MPCS
syntax_checking string fatal “ignore”, “warn”, or “fatal”
reserved_keywords string fatal “ignore”, “warn”, or “fatal”
restart_consistency_checking string fatal “ignore”, “warn”, or “fatal”
TangentMethod string element method of computing tangent
WtMass Real 1 Mass multiplier

Table 3-6. – Available keywords in the Parameters section.

42

Keyword Type Default Description
nodesets_with_disp list nodesets with prescribed displacements
thermal_time_step int 1 input of thermal data
thermal_exo_var string TEMP Exodus temperature variable name
mpmd_transfer_version NSC/new new In core transfer coupling library
mpmd_transfer_type fuego/copy Which code transfer is

sparc/interpolation occurring from
mpmd_transfer_sidesets string_list Surfaces on which

string_list transfer is occurring

Table 3-7. – Available keywords in the Parameters section related to code coupling and
hand-off.

Keyword Arg Default Description
OutputInitialTime boolean false write output at t=0
SharedAcousticStiffness yes/no no share stiffness across processors
linear_solver_warn_factor Real 10 GDSW warnings
linear_solver_bailout_factor Real 100 GDSW fatal errors

Table 3-8. – Developer keywords in the Parameters section.
Developer keywords in the Parameters section. These keywords may be used, but their use
is discouraged, and they are not fully tested.

Table 3-9. – Some useful combinations of units.
length mass time WtMass density force modulus internal mass
m Kg sec 1 Kg/m3 N N/m2 or Pa Kg
ft slug sec 1 slug/ft3 lbf lb/ft2 slug
ft lbm sec 1/32.2 lbm/ft3 lbf lb/ft2 slug
in lbm sec 1/386.4 lbm/in3 lbf psi lbm/386.4
mm µg µs 1 Kg/m3 N MN/m2 or MPa µg
mm g sec 1 g/mm3 µN N/m2 or Pa gram
mm mg sec 1/1000 g/cm3 µN N/m2 or Pa gram

43

eig_tol This is the tolerance used in the eigen solution method for eigenvalues. The
default is machine precision. This parameter can sometimes be loosened to aid
convergence. See Section 2.8.3 for details.

nonlinear_default In nonlinear transient dynamics or nonlinear statics, computing the
fully nonlinear response of all the elements in the mesh can be computationally
expensive. In some cases it is unnecessary. For example, for a simulation that only
involves Joint2g elements and solid (3D) elements, the analyst may determine that
the nonlinear effects of the solid elements are negligible. In such cases, it is
advantageous to be able to control the nonlinear response of elements block-by-block.
And there is a block-level parameter described in Section 5.7.2 that selects the
optional nonlinearities for specific blocks. Instead of entering this parameter for each
block, nonlinear_default sets the default for all blocks. If no, then all blocks
default to linear behavior, unless specified otherwise in the BLOCK section. If yes,
then all elements default to nonlinear behavior. Note that the block-level flags
override the nonlinear_default keyword. There are two possible cases for this
keyword.

nonlinear_default=no All elements default to linear behavior.

nonlinear_default=yes All elements default to nonlinear behavior.

As noted in Section 5.7.2, there are limitations for using linear materials in nonlinear
analysis.

TangentMethod The tangent stiffness matrix may be used in a full Newton update in
nonlinear statics or transient dynamics (see Sections 4.21 and 4.22). By default, each
of the elements can compute its own tangent stiffness matrix. There are cases
(particularly when elements are under development) when it is better to use a
tangent matrix computed from finite difference methods. There are three possible
values for this keyword.

TangentMethod=element The standard element method.

TangentMethod=difference Use finite difference.

TangentMethod=compare Use the standard method, but also compute the matrix
by the difference method. Output of the difference of every element matrix in
the model will be sent to the results file. 2

info Option info selects diagnostic information for standard out. There are four different
levels. Each level increasingly allows more output to standard out. The GDSW
option “prt_debug” overrides “info” for GDSW output. The four levels of control are:

0. Silent – output warnings and std error to the screen (untested)

1. Normal – output the data most analysts would use (untested)

2In parallel solutions the results file is written only for the first processor unless the “subdomains” option
is specified in the echo section (8.8).

44

2. Detailed – Convergence, solution addressing issues (unimplemented, tested).

3. Debug – Silent, normal, detailed and diagnostic information (tested).

Info is regularly used for debugging eigenvalue problems. Option prt_debug is defined
in Section 3.5.6. Option prt_debug causes GDSW to write load balance information
to a file named subdomainData.dat. Its contents are described in Section 3.5.3

Example of usage:

Parameters
info=0

End

This sets the “info” control level to Silent.

syntax_checking Sierra/SD has the ability to check an input deck for syntax and
spelling errors. This option controls this behavior. By default, a violation is printed
to the screen and execution is terminated. If the user wishes, violations can be printed
while execution continue, or the checking for violations can be disabled completely.

The three levels of control are:

ignore silently ignores those entries.

warn provides a warning for those entries.

fatal stops the analysis. This is the default.

reserved_keywords Sierra/SD has the ability to check exodus entities for potentially
ambiguous or confusing names. This option controls this behavior. By default, a
violation is printed to the screen and execution is terminated. If the user wishes,
violations can be printed while execution continue, or the checking for violations can
be disabled completely. Note that this option will only control the behavior when
checking ambiguous names: we will always issue a warning if certain reserved
characters are found within a name. For more information, see section 3.2.4.

The three levels of control are:

ignore silently ignores those entries.

warn provides a warning for those entries.

fatal stops the analysis. This is the default.

restart_consistency_checking by default Sierra/SD will check that the restart data
file is consistent with the analysis mesh. These checks include confirming identical
node ids, element id, node coordinates, and element connectivity. By default, if the
restart file is inconsistent Sierra/SD will output a fatal error and terminate
execution. Generally such restart inconsistencies indicate a serious problem. For
example trying to map the restart data from the wrong analysis onto a new mesh will

45

produce nonsensical behavior. Use restart_consistency_checking to convert these
checks to a warning or skip them.

The three levels of control are:

ignore silently ignores restart consistency issues.

warn provides a warning for restart consistency issues.

fatal stops the analysis for restart consistency issues. This is the default.

SkipmpcTouch Sierra/SD uses a unique method of determining an active degree of
freedom set. Unlike codes like NASTRAN which use an automatic single point
constraint method, Sierra/SD loops through all elements and activates only degrees
of freedom that are required for elements. Multipoint constraints pose a particular
problem because some codes (like NASTRAN) may include multipoint constraints to
unused degrees of freedom. Since these are eliminated with the auto-spc, this poses
no problem to these codes, but may confuse Sierra/SD significantly. On the other
hand, usually degrees of freedom associated with MPCs should be included in the
active set, and leaving them out can produce errors.

As a stopgap measure, we provide the parameter SkipmpcTouch. If this parameter
is set, no degrees of freedom will be activated through multipoint constraints.

condition_limit Element quality checks are important for evaluating the effectiveness of
the mesh. By default, elements with moderately bad topology are reported. However,
sometimes there are so many of these warnings, that the bad elements may get
missed. The condition_limit parameter permits user control of the reporting.
Setting this parameter to a larger number will eliminate message from marginal
elements. Element checking can also be disabled (see the ElemQualChecks parameter
in the outputs Section 8.1.12). The default value is 1e6.

Note that the condition_limit parameter is ignored if the
ElemQualChecks option has been disabled in the output section
(8.1.12).

reorder_Rbar An Rbar is a type of rigid element. This option reorders all Rbar elements
to minimize the number of them connected to a single node. Having may Rbar
elements connected to the same node results in a problematic matrix sparsity pattern
which can reduce efficiency. Reducing the number of connections can shorten run
time.

If redundant Rbars are present (i.e. connections forming a cycle), they are removed.

Specify reorder_Rbar yes or reorder_Rbar no. The default value is yes, which
means Rbars will be reordered.

46

thermal_time_step For thermal analysis solution procedures (i.e. statics or transient
dynamics with a thermal_load body load), or for any solution procedure that uses
temperature dependent material properties, the temperature distribution of the
structure must be read in from the Exodus file. Typically, the input Exodus files in
this case would be the output files from a thermal analysis, and thus would contain
the necessary temperature data. Since such an analysis could contain several time
steps of temperature data, the parameter thermal_time_step allows the analyst
to select which set of temperature data is to be read into Sierra/SD. The following
gives an example.

Parameters
thermal_time_step 10

End

In this case the user would be requesting that the temperature data corresponding to
the 10th time step be read into Sierra/SD.

energy_time_step This variable is identical to the “thermal_time_step” above, but
applies to cases where the energy density is input and must be converted to a
temperature. Either energy density or temperature can be input, but not both.

thermal_exo_var If a material specifies a coefficient of thermal expansion and a
reference temperature, then the corresponding thermal strain is computed, and the
corresponding thermal load 7.3.8 is applied. Otherwise, a material property may be
an arbitrary function of temperature. Temperature dependent materials 5.4.6 are
supported. Temperature dependent viscoelastic materials 5.3 are also supported,
using the corresponding input syntax. In either case to read the temperature from
the input Exodus file, the name of the temperature field has to be specified. And
that is what thermal_exo_var is for. The default variable name is ’TEMP’. In the
following example the name is changed to temperature.

Parameters
thermal_exo_var "temperature"

End

energy_exo_var This variable is identical to the “thermal_exo_var” above, but applies
to cases where the energy density is input and must be converted to a temperature.
Either energy density or temperature can be input, but not both. The only difference
is that the energy density will be divided by the specific heat to arrive at the
temperature.

Parameters
energy_exo_var "EDEP"

End

47

mpmd_transfer_version Defines which version of the runtime application coupling
library to use. Currently, the NSC option is used for coupling to Nemo, and the new
option is used to couple to SPARC or Fuego. See Section 7.2.6.

mpmd_transfer_type Defines which code Sierra/SD is coupling to during the run.
The fuego are copy options are equivalent and one of them must be used when
coupling to Fuego. The sparc and interpolation are equivalent and one of them
must be used when coupling to SPARC. See Section 7.2.6.

mpmd_transfer_sidesets Defines the sidesets on which coupling are occurring. When
data is mapped from one code to the other, the transfer will only occur on these
sidesets. See Section 7.2.6.

FilterRbmLoad Establishes a filter for rigid body components of the input load. The
options are described in the table. It defaults to unfiltered. The parameter may need
to be combined with the RbmTolerance and solver parameters. The
FilterRbmLoad parameter is only supported for transient and static solution cases.
For other solution cases this parameter will have no effect on the solution.

During rigid body mode filtering a net force in a rigid body mode will be
counter-balanced by a force with a distribution defined by the rigid body mode shape
times the mass matrix. For example to counter-balance a net force in X direction
effectively a gravity load would be applied to the body where the sum of the forces of
that gravity load is equal and opposite to the net force to be balanced. For rigid body
filtering a well-defined mass matrix is required for both transient and static solution.

The rigid body load filtering should only be used of a model that has exactly the six
standard rigid body modes.

Option Description

NoFiltering skip all RBM filtering for the load
AllStructural apply filtering to all 6 structural RBM
RotationOnly apply filtering to rigid body rotation only

See Section 7.3.19 for more details about the use of this option.

RbmTolerance Rigid body filters depend upon accurate rigid body modes. The
application checks the matrix product of the stiffness matrix to ensure that these
vectors are in the null space of the stiffness matrix. If any of the requested vectors
are not in the null space, the application terminates. The default is 1e−10.
RbmTolerance provides user control of the threshold for that error. It depends on the
stiffness matrix, K, and a rigid body vector, φr,

tolerance= ‖KΦr‖2
‖Kd‖∞‖Φr‖2

MatrixFloor Primarily a debugging option. The nearly zero terms in a matrix can be
removed using this parameter. Values below this floor are eliminated from the

48

matrix. This can reduce fill, but if used improperly too much of the matrix can be
affected. It can be important when running on different platforms, where round off
can affect the matrix fill, and make it difficult to compare solutions. This is a relative
value, so 1.0E-6 would remove terms in the matrix that are a million times less than
the largest term. Default is zero.

defaultSpecificHeat The specific heat is used to convert energy to temperature with the
following equation, Ẽ = Cv∆T , see Section 5.4.8 for details. The specific heat is set
on a material by material basis. A default value for the specific heat can be set using
the keyword defaultSpecificHeat which can then be overridden by defining the
specific heat for a material. A fatal error is given if the specific heat is not defined for
a block of material containing energy input and the defaultSpecificHeat keyword
can be used to avoid this.

MaxmpcEntries Soft limit on the number of mpc entries in any single multipoint
constraint. Normally the default will be sufficient, but large RBE3 type entries may
exceed this in rare cases. The limit is there to avoid errors reading the input, and
because such large constraints can consume memory.

eigen_norm Eigenvectors may be arbitrarily normalized. Three common approaches are
listed in Table 3-10. All methods retain orthogonality of the eigenvectors, but the
normalization differs. The default, mass normalization, is most commonly used as it
ensures that the inner products of eigenvectors with the mass matrix is identity.
However, this normalization is not well suited to output visualization. The
“visualization” normalization mimics what is automatically done in MSC/Patran,
and should provide a reasonable visualization without rescaling each mode. In
“visualization” normalization, the maximum translational displacement is normalized
to be less than 10 percent of the maximum model extent, while also insuring that the
model rotation remains below 1 radian. Unit normalization ensures that the largest
value of the eigenvector is one. 1 A global variable, EigenVectScale, provides the
scale factor by which the mode was scaled.

Method Algorithm Comment
Mass φTi Mφi = 1 Default. Simplifies numerics

Visualization max(φi)=(model size)/10 Simplifies visualization
Unit max(φi)=1

Table 3-10. – Eigenvector Normalization Methods.

constraint_correction Ensure that each multipoint constraint generated is orthogonal to
all rigid body modes. This is useful for lofted surfaces. If the surfaces are tied as if

1The “unit” method of normalization computes max(φ), which is computed only on translational displace-
ment degrees of freedom. Note also that only displacements are renormalized. No effort is made to
renormalize element variables such as strains, stresses or energies. Thus, if these are requested in an
eigendecomposition, they will not be consistent with the renormalized eigenvectors, but will retain mass
normalized values.

49

they were coincident, the constraints are incorrect, and eliminate some or all the rigid
body modes as worked out in subsection Orthogonality of MPC to Rigid Body
Vectors in Section Linear Algebra Issues of the Theory Manual.

Parameters
Constraint_Correction=yes

End

MFile_Format Most of our matrix data can be written as MATLAB readable files. By
default, these are written as sparse matrices, as functions. Other formats are also
available. The “full” format does not use the sparse methods and is thus compatible
with Octave or other tools. Alternatively, the “3column” format can be used. In this
format, the file is loaded using the MATLAB “load” command. The data is then
converted to a sparse matrix using the MATLAB “sparse” command. The
“3column” format may be significantly faster in some cases, but it does require more
user interaction. Figure 3-3 compares a simple example for the three formats. In all
cases, the matrix symmetry is the same. A fourth format, “CSV”, is also available for
compatibility with other external tools. 2

Sparse_Function Full 3column

function s=Kssr()
s=[1 1 0.11
1 2 0.12
2 2 0.22];
s=sparse(s(:,1),s(:,2),s(:,3));

function
s=Kssr()
s=zeros(2,2);
s(1,1)=0.11;
s(1,2)=0.12;
s(2,2)=0.22;

1 1 0.11
1 2 0.12
2 2 0.22

Figure 3-3. – Example MFile Format Results.

RemoveRedundancy RemoveRedundancy affects node-face constraints created by ’Tied
Data’ or ’Contact Definition’. Redundant constraints cause most solvers to fail.
Redundant constraints are often introduced when two surface pairs are tied next to
each other, but there are a variety of sources for these redundancies. Exact
redundancies are always automatically eliminated, but that is often not sufficient.
This parameter removes constraints when a node is tied to more than one face or if
the node shows up both as a node of a node-face constraint and attached to a face of
a different node-face constraint. By default, it is “true”.

RandomNumberGenerator The default random number generator, “rand”, is the
standard generator available from system libraries. It should be the best random

2Note that the CSV format should be readable by Microsoft Excel, but there are often limits on the number
of columns that can be read.

50

number generator in terms of the quality implementation. In a few cases the analyst
may want a more repeatable random number generator, that is independent of the
platform. The “test” random number generator can be used in this case. It is not
recommended for general use, and the statistics of the generator are not
well-established.

MortarMethod Two mortar methods are available in Sierra/SD: standard and dual
(see37). By default, the dual method is selected as it is almost always more efficient
in memory use.

ComplexStress Most often, analysts do not want output of stress variables in frequency
response function analysis. Such output is complex, and huge volumes can be
generated. Selecting “ComplexStress=yes”, along with “stress” in the echo section
permits output of this data. The default is “ComplexStress=no”.

num_rigid_mode Is used to signal to the linear solver that the system is singular and
that the singularity is associated with structural and/or acoustic rigid body modes.
This is used, for example, in the solution of statics problems without any essential
boundary conditions or frequency response analysis with the modal acceleration
method. Where possible, other methods should be used to eliminate the singularity.
For example, in modal analysis a negative shift is recommended. Currently, allowed
values for this parameter are 1 (acoustic mode only), 6 (structural modes only), or 7
(structural and acoustic modes). We also note that when using the FilterRbmLoad
parameter, it is necessary to specify num_rigid_mode to correspond to the
number of rigid body modes that will be filtered. For example, if FilterRbmLoad
was set to AllStructural, then num_rigid_mode should be set to 6.

ignore_gap_inversion Initial overlap removal is another name for gap removal. Gap
removal may change element quality. A fatal error occurs if element quality gets
much worse. To ignore this poor element quality set the ignore_gap_inversion
parameter to true. The gap removal solution case 4.34 making debugging easier.

DoInitialMassSolve Determining the initial acceleration is necessary28 for quadratic
convergence. By default, a consistent initial acceleration is found through an initial
mass solve, see Section 4.29.1.2. Some combinations of MPCs can result in a singular
mass matrix, leading to errors in the initial mass solve. To skip the initial mass solve
use the command,

DoInitialMassSolve=false

OutputInitialTime In transient simulations, the output can be written at time t=0, prior
to the first time step by using the command

OutputInitialTime=true

The default is set to false. This will not write the initial time step if reading from a
restart file because the time is not 0.

51

linear_solver_warn_factor The GDSW linear solver approximates the solution u of a
linear system, Ku= f so that the predicted norm of the kth residual f −Kuk is less
than a user specified tolerance times the initial residual norm f −Auo (the default is
1.e−6). However, the true residual may be larger, and a careful analyst must check
the true residuals. To automate the task of the checking, a warning message is
written if the true residual is more than linear_solver_warn_factor times the
predicted residual The default value is 10.0.

linear_solver_warn_factor=10.0

linear_solver_bailout_factor The GDSW linear solver approximates the solution u of a
linear system, Au= f so that the predicted norm of the kth residual f −Auk is less
than a user specified tolerance times the initial residual norm f −Auo (the default
solver_tol is 1.e−6). However, the true residual may be larger. A fatal error is
thrown if the true residual is more than linear_solver_bailout_factor times the
predicted residual. The default value is 100. For instance, in an ill-conditioned
problem as the solver_tol is decreased to improve resolution, one may choose to
increase the bailout factor to mitigate the risk of a fatal error.

linear_solver_bailout_factor=100.

RequireMatchedBlocks Sierra/SD always requires that each Exodus block have a
corresponding entry in the .inp file. This parameter controls behavior if there are
blocks defined in the .inp file that do not appear in the mesh.

ignore silently ignores those entries.

warn provides a warning for those entries. This is the default.

fatal stops the analysis.

nodesets_with_disp This parameter, when used in conjunction with the
nUpdateConstraints transient option (see section 4.29.1), enables specifying
prescribed displacements over a subset of all nodes via nodeset output.

nodesets_with_disp is currently BETA release.
Enable with the “- -beta” command-line option.

3.4. Solution Options

The options described in Table 3-11 and in the following paragraphs are part of the input
deck Solution section. None of the keywords are required. Note that in multicase solutions
most of these parameters may be applied separately within each case (see Section 4.2.1).

52

Table 3-11. – Sierra/SD Solution Options.
Parameter Type Default Description
restart none none Controls both restart input and

|read restart output. An optional from and
|write output. An optional from and
|auto num_procs argument can be given.

lumped off Lump the mass matrix
(as opposed to consistent)

lumped_consistent off Mix lumped and consistent matrix for
reducing dispersion error in some
cases

solver <string> auto Select solver to use for case, default
depends on model size and structure

ConstraintMethod Lagrange Lagrange Method for applying MPCs
penalty

scattering false| false Treat acoustic loads as scattering
true loads rather than incident loads

symmetrize_struct_ off Force structural-acoustic system
_acous matrices to be symmetric

3.4.1. Flush

The parameter flush controls how often the Exodus output file buffers should be flushed.
Flushing the output ensures that all the data that has written to the file buffers is also
written to the disk. This parameter also controls the frequency of output of restart
information if requested. Too frequent buffer flushes can affect performance. However, in a
transient run, data integrity on the disk can only be assured if the buffers are flushed. A
flush value of -1 will not flush the Exodus output file buffer until the run completes. The
default value is to flush the buffers every 50 time steps.

3.4.2. Restart

The restart option controls both the creation and retrieval of restart files, which allow
you to save and resume a solution. There are two main types of analysis that can use
restart: transient and eigen. Transient restart saves the current state of a transient solution
in a separate file, enabling you to save progress and continue solving for more time steps at
a later time. Eigen restart saves computed modes and enables the calculation of additional
modes later on.

The restart command has four options:

none : Ignores and doesn’t read or write restart files. Existing files remain unchanged.
This is the default if no restart option is specified.

53

read : Reads existing restart files but won’t create new ones. If the files don’t exist, an
error occurs.

write : Writes restart files, overwriting any previous ones.

auto : Combines "read" and "write", where previous restart files are optional. If restart files
exist, they are read. If no restart files exist the solution case will start from scratch.

The default file names of restart files to read and write are generated based off of a
combination of mesh name and case name. The restart read and auto options can take
optional from and num_procs clauses to define a non-default location for the file containing
the restart data. This is illustrated by additional examples for both transient and Eigen
restart below.

3.4.2.1. Restart In Transient Analysis
The following examples show how to extend the analysis time using transient restart.

Example 1: The first input deck solves 200 transient steps and writes a restart file named
mesh-a.rst_trans. The second input deck reads mesh-a.rst_trans and solves an
additional 100 steps, resulting in a total of 300 steps. The solutions of the additional time
steps will be appended to the existing exodus output and history files.

//Input deck 1
Solution

case a
transient
restart=write
time_step 1e-6
nsteps 200

End
File

geometry_file = ’mesh.g’
End

//Input deck 2
Solution

case a
transient
restart=read
time_step 1e-6
nsteps 300

End
File

geometry_file = ’mesh.g’
End

54

Example 2: The first input deck solves 200 transient steps and writes a restart file named
first-a.rst_trans and an output file first-a.e. The second input deck utilize the
from command to read first-a.rst_trans and solves an additional 100 steps, resulting
in a total of 300 steps and outputs to a new file second-b.e.

//Input deck 1
Solution

case a
transient
restart=write
time_step 1e-6
nsteps 200

End
Outputs

database name = ‘‘first.e’’
End

//Input deck 2
Solution

case b
transient
restart=read from ‘‘first-a.rst_trans’’
time_step 1e-6
nsteps 300

End
Outputs

database name = ‘‘second.e’’
End

Example 3: The first input deck, run in parallel on two processors, solves 200 transient
steps and writes restart files named

first-a.rst_trans.2.0 and first-a.rst_trans.2.1, as well as output files
first-a.e.2.0 and first-a.e.2.1. The second input deck, run on a different number of
processors (three), reads first-a.rst_trans.2.0 and first-a.rst_trans.2.1, solves an
additional 100 steps, and outputs to new files second-b.e.3.0, second-b.e.3.1, and
second-b.e.3.2.

55

//Input deck 1
Solution

case a
transient
restart=write
time_step 1e-6
nsteps 200

End
Outputs

database name = ‘‘first.e’’
End

//Input deck 2
Solution

case b
transient
restart=read from ‘‘first-a.rst_trans’’ num_procs 2
time_step 1e-6
nsteps 300

End
Outputs

database name = ‘‘second.e’’
End

The frequency of writing transient output restart files is controlled by the flush command.
The transient restart file is typically saved with the last two steps as a backup in case one
becomes corrupted.

Transient restart is expected to result in exact solutions. For example, if an intermediate
restart step is used in the example, it will generate the identical solution steps as if the
total 300 steps were run in a single analysis.

When restarting a multicase solution, the latest allowable restart time will be used.
Consider the following solution block:

56

Solution
case one

transient
restart=auto
time_step 1e-6
nsteps 200

case two
transient
restart=auto
time_step 1e-5
nsteps 300

End

Sierra/SD will search for restart files that would be valid for case one and case two. The
furthest along available restart file will be used and the analysis will continue from that
point. If a restart file exists for case two, Sierra/SD will restart into case two. If no
restart file exists for case two, Sierra/SD will restart into case one if possible. If no restart
file exists for either case, the analysis will start from scratch.

3.4.2.2. Restart in Eigen
The Eigen restart function saves and reads the computed modes from an exodus database,
which is created by the OUTPUTS command block. If the restart command is set to write
or auto in the Eigen solution, displacement output will be automatically activated in the
OUTPUTS block to make it possible to use the output file for restarting.

Example 1: the first input deck solves for 40 modes and writes the output to a file named
mesh-a.exo. The second input deck then reads this file and solves for an additional 10
modes, resulting in a total of 50 modes. The modal output of the second run will be added
to the existing exodus output and history files.

//Input deck 1
Solution

case a
eigen
restart=write
nmodes 40

End
File

geometry_file = ’mesh.exo’
End

57

//Input deck 2
Solution

case a
eigen
restart=read
nmodes 50

End
File

geometry_file = ’mesh.exo’
End

Example 2: The first deck will solve for 20 modes and write an output file named
first-a.e. The second deck will read the previously computed 40 modes from first-a.e
utilizing the from option and solve an additional 20 modes. A new output file second-b.e
will be created which contains all 60 modes.

//Input deck 1
Solution

case a
eigen
restart=write
nmodes 40

End
Outputs

database name = ‘‘first.e’’
End

//Input deck 2
Solution

case b
eigen
restart=read from ‘‘first.e’’
nmodes 60

End
Outputs

database name = ‘‘second.e’’
End

Example 3: Eigen restart also allows for N to M restart with the optional num_procs
command. This enables reading of an Eigen restart file that was decomposed for a different
number of processors. N to M restart is useful when the first Eigen solution was computed
using many processors but the subsequent solution case, such as modaltransient, can be
computed using a smaller number of processors. This can be beneficial due to the fact that
Eigen solution is computationally intensive and memory-intensive, while modal transient is
relatively inexpensive. An example of N to M restart is shown below where the first input

58

deck is run using 100 processors, and the second input deck reads the previously computed
Eigen solution and then moves on to modal transient on 5 processors.

//Input deck 1
Solution

case eig
eigen
restart=write
nmodes 75

End
Outputs

database name = ‘‘beam.e’’
End

//Input deck 2
Solution

case eig
eigen
restart=read from ‘‘beam.e’’ num_procs 100
nmodes 75

case trans
modaltransient
nsteps 1000
time_step 1.0e-6

End
Outputs

database name = ‘‘beam.e’’
End

Eigen solution is a memory and computationally intensive process, and the output/restart
files are written only after the solution is completed. If the solution is interrupted due to a
lack of queue time, no restart file will be available.

While Eigen restart allows for computing additional modes, it may result in slight
differences from solving for all modes at once, as it follows a different algorithmic path.
The known modes are first read and compressed out of the system, and then additional
modes are computed on this compressed system.

Incrementally computing a few more modes with multiple Eigen restart is not
recommended, as it can result in lower numerical accuracy compared to solving for all
modes at once.

3.4.2.3. Usage Tips and Guidelines
The auto option is best used when running the same input deck repeatedly in the same
directory to generate additional modes or transient time steps. However, care should be

59

taken as certain typos, like renaming a case, may have unexpected effects like a previous
restart being unrecognized triggering an expensive solution computation. To ensure the
code is behaving as intended use the read and write options which will error out if
something unexpected occurs.

It is not advisable to alter the model’s input deck, such as its material properties, element
formulations, boundary conditions, contacts, constraints, etc., during a restart as the
outcomes can be unpredictable. For instance, if the material properties are modified during
an Eigen restart, the Eigen modes linked to the previous material properties will be loaded,
then compressed from the matrices, and finally new modes will be calculated using the
updated material properties. The results of this process are likely to be both physically
and mathematically incorrect.

Restart files are stored in the ExodusII format, which enables easy access and
manipulation of the data using various standard tools. The naming conventions and
formats used for restart files are described in Table 3-12.

3.4.2.4. Restart Solution Case Support and Limitations
Only the following solution cases support restart.

• Eigen

• transient

• NLtransient

• modaltransient

• QEVP (with Anasazi and sa_eigen methods)

A frequent scenario is restarting an Eigen solution to import pre-computed modes for use
in subsequent solutions, such as modalfrf.

Mixing case types in transient cases, such as using a restart file from a modaltransient
analysis in a transient or nltransient analysis, is possible but may result in information loss
and mapping ambiguities, and is not typically recommended.

The restart options for QEVP solution are limited, as it can only read already computed
modes but cannot calculate new modes incrementally.

60

Solution file name Details
eigen example-out.exo Use the standard Exodus output for

restart. Displacements must
be written or no restart is
possible. Other variables (such as
strain energy) may also be written.

qevp example-out.exo Uses standard Exodus output for restart.
No additional modes may be computed.

transient, example-out.rst_trans.exo The two most recent time steps
NLtransient, are written. They are
modaltransient only written at the “flush” interval.

Table 3-12. – Restart file format and contents for various solutions.

3.4.3. Solver

As Sierra/SD evolves, various solvers are available for computation of the solution. Each
solver brings with it different capabilities and sometimes unwanted features. Currently,
available solvers are listed in the following.

auto Use the best known solver. Generally this is recommended, and is the default. The
matrix of solvers versus solution types is messy, and generally the best solution will
be found by using this option.

GDSW The Generalized Dryja, Smith, Widlund (GDSW) solver is based on a domain
decomposition preconditioner which combines overlapping Schwarz and iterative
substructuring concepts.19 The GDSW solver is well suited to solving problems with
large numbers of constraint equations. It has also been observed to be competitive
with other parallel solvers, even for problems with only a small number of
constraints. The GDSW solver is currently under development and supported by the
Sierra-SD team. The most recent development efforts for the GDSW solver have been
focused on implementation and testing of a new Helmholtz solver for direct frequency
response analysis.

Generally no user input is required for specification of a solver. Usually the specification
can be omitted or specified as auto. If a solver is requested and unavailable in a given
version of the code, a warning will be issued, and auto will be selected.

The solver may be specified as a default (above the case keywords as detailed in Section
4.2.1), or it may be individually specified within the case framework. The default value is
auto. In the example shown below GDSW will be used for the modal analysis, and the
auto selection for the for transient dynamics and direct frequency response. If
“input_summary” is specified in the “ECHO” section (see Section 8.8) then the solver
information will be echoed to the results file.

61

SOLUTION
solver=auto
case eig

eigen nmodes=50
solver=gdsw

case nltransient
NLtransient
(other parameters)

case frf
directFRF

END

3.4.4. Lumped – option

To use a lumped mass matrix for all solution cases add option lumped anywhere in the
Solution section. Most off diagonal terms are set to zero. The diagonal terms are
increased to conserve mass.

The drilling degrees of freedom associated with beams and shells
can generate spurious modes when they are lumped. As a con-
sequence, Sierra/SD does not fully lump these degrees of free-
dom. They are lumped in the element coordinate frame, but
transforming the mass matrix to the physical coordinates re-
sults in a 3×3 matrix.

3.4.4.1. Computational Acoustics In acoustics simulations with hexahedrons, in theory
a special mass matrix minimizes dispersion error.15 Adding lumped_consistent to the
Solution selects the special mass matrix. Many have conjectured that the special mass
matrix enhances simulations of linear elasticity. The CFL number c dt/dx depends on the
sound speed, c, the element size, dx, and the time step size, dt. A study40 of the
lumped_consistent mass matrix reached the following conclusions.

• In the most accurate simulations, time step size is scaled with mesh size to maintain
a constant CFL number.

• Simulation accuracy depends on the temporal (e.g. Newmark) as well as the spatial
(finite element) discretization.

• A lumped_consistent mass matrix can enhance accuracy.

• With Newmark Beta time integration, the most accurate simulations used a
consistent mass matrix and a CFL near 7/10.

62

3.4.5. Constraintmethod – option

The ConstraintMethod option is defined in the Solution section to indicate how
multipoint constraints (MPC) will be applied. MPCs applied using Lagrange multipliers.
Inverse problems sometimes use an experimental penalty method.

3.4.6. Scattering – option

For some acoustics and structural acoustics problems, it is advantageous to define the loads
in terms of an incident pressure instead of a total pressure. The solutions for the scattered
pressures follow the same differential equations as those of the total pressures. It may be
necessary to combine the incident and scattered terms to compute a total pressure. A
review is presented in subsubsection Acoustic Scattering subsection Acoustic and
Structural Acoustic Boundary Conditions section Acoustics and Structural Acoustics of the
Theory Manual Note that the scattering keyword applies to all loads in the solution case.
It is nonsensical to mix scattering pressure inputs with total pressure inputs.

Scattering solutions require this keyword in the solution block. In addition, loads should be
applied properly in the LOADS block. The user must apply a load to both the structural
and the acoustic side of a wet surface. A function tailored for this specific purpose may be
used. 1

3.4.6.1. symmetrize_struc_acous – option By default, coupled structural acoustic
discretizations are symmetric. This is accomplished42 by scaling the acoustic equation by a
−1. In some cases (e.g. infinite elements) scaling is impossible, and cases the code
internally reverts to the nonsymmetric formulation. The nonsymmetric formulation is
always available by setting symmetrize_struc_acous to false. In a multicase solution
symmetrize_struc_acous can vary from case to case. The pros and cons of two
approaches have never been studied.

3.5. GDSW

GDSW is the workhorse for parallel solutions. It is the default linear solver. Many
Sierra/SD features require that GDSW be the linear solver. In this manual, “the solver”
is the linear solver. This section describes the GDSW parameters. Table 3-13 describes the
basic solver parameters. Parameters for advanced usage are given in Tables 3-14 and
Table 3-15 Report problems using the GDSW solver with the default solver parameters to
the Sierra help system at sierra-help@sandia.gov.

To use a non-default linear solver in the solution section set solver=GDSW. Non-default
parameters are set in an optional GDSW section. The GDSW section applied to each

1the “plane_wave”, “planar_step_wave” and “shock_wave” functions compute both appropriate pressures
on the structure, and normal velocities on the acoustic medium. See sections 3.8.10, 3.8.12 and 3.8.14.

63

solution case. The first subsection of this Section 3.5.1 presents a way to specify different
GDSW parameters for each solution case. Subsection 3.5.1 describes additional
parameters. Subsection 3.5.2 describes GDSW output. The corresponding parameters are
summarized in Table 3-16. Subsection 3.5.3 describes some techniques for improving
performance and reliability. Subsection 3.5.4 reviews theory related to solution accuracy.
The GDSW Helmholtz solver is a relatively new capability. Subsection 3.5.5 presented the
parameters for the parallel frequency response linear solver. The parameters are
summarized in Table 3-19. Report any problems using the new Helmholtz solver to
sierra-help@sandia.gov.

Table 3-13. – GDSW Section Options. (Basic)

Variable Values Default Description
max_iter integer 1000 maximum number of iterations
solver_tol real 1e-6 relative residual convergence tolerance
overlap integer 2 number of layers of overlapping nodes

for preconditioner
orthog integer 1000 number of stored search directions used

to accelerate solver convergence
(also see num_vectors_keep)

prt_summary integer 3 output flag:
0 - no summary
1 - summary
3 - detailed summary

solver_tol It is important to control the accuracy of the solution. For all our linear
solvers, solver_tol is the requested accuracy of the computed solution as measured by
the relative residual error. In other words, the 2-norm of the residual vector for the
computed solution divided by the 2-norm of the right-hand side force vector should
be no greater than solver_tol.

orthog Convergence may be accelerated by storing and recycling search directions from
previous solves. This feature requires additional memory, but may significantly
reduce iterations. It is possible for the application of these vectors to be unstable.
This rare event is avoided by trying orthog=0. The default value of orthog is 1000.
For the Helmholtz linear solver the corresponding parameter is orthogH.

krylov_method A variety of Krylov iterative methods are available as shown in Table 3-14.
The default should work fine in most instances. If convergence problems arise,
switching to classic right preconditioned GMRES is recommended. (krylov_method
= gmresClassic) without the use of any stored search directions (orthog = 0).

default_solver The subdomain sparse direct linear solver is specified either by name
(Esmond, Pardiso, NoPivot) or by the corresponding integer (1,3,6).

num_rigid_mode note: see parameters, Section 3.3. This keyword must not appear in
the GDSW solver section. It is read from the Parameters section.

64

Table 3-14. – GDSW Section Options 1. (Advanced)

Variable Values Default Description
krylov_method integer 1 0-pcg: preconditioned conjugate gradients

1-GMRES: right preconditioned GMRES
(generalized conjugate residual version)
2-lgmres: left preconditioned GMRES
3-flexgmres: flexible right precond GMRES
4-flexgmres2: variant of flexgmres
5-gmresClassic: right preconditioned

default_solver integer 1 1-direct: Esmond Ng’s sparse direct solver
3 - Pardiso for Pardiso sparse direct solver
(Intel MKL only), 6-NoPivot:
Clark’s sparse direct solver

num_rigid_mode note: see parameters, Section 3.3.
constrain_rbms x y z rotx Enables solution of static

roty rotz p system with rigid body modes
max_numterm_C1 integer 250 max num terms for Type 1 constraints
coarse_option integer 1 0 - additive coarse correction,

1 - multiplicative coarse correction
SC_option integer 1 0-no/1-yes: eliminate subdomain interior

unknowns using static condensation
weight_option integer 2 1 - to not use weighted residuals for

overlapping subdomain problems
coarse_size string auto coarse space reduction options

auto, small, large
coarse_size integer 0 0 (auto), 1 (small), 2 (large)
reorder_method string metis_edge metis, metis_edge, rcm,

minimum_degree, none
num_GS_steps integer 1 number of Gram-Schmidt orthogonalization

steps for stored search directions
con_tolerance real 2.5e-9 singularity tolerance for processing constraints
con_row_tolerance real 0.1 pivoting tolerance for processing constraints
scale_option 0 0 - no scaling in factorizations

1 - use scaling in factorizations
diag_scaling string none none - no scaling of operator matrix

diagonal - symmetric diagonal scaling
PTAP_solver integer 1 solver for conjugate gradient matrix

0-diag: diagonal (in exact arithmetic)
1-full: full ΦTAΦ matrix

bailout keyword If keyword is found, ignore errors
coarsening_ratio integer 1000 coarsening ratio for multilevel solver

65

Table 3-15. – GDSW Section Options 2. (Advanced)

Variable Values Default Description
minCoarseLevels integer 1 min number of coarse levels (for testing only)
maxCoarseLevels integer 1 max number of coarse levels
maxCoarseSize integer 3000 max size for coarsest problem
enforceActualResidual integer 0 0-no/1-yes
graphPartitioner integer 0 graph partitioner for multilevel solver

0-Parmetis, 1 PHG in Zoltan
num_vectors_keep integer 900 related to orthog; see discussion below
stag_tol real 0.01 Used to detect stagnation
dd_solver_output_file string dd_solver.dat Output name for domain decomposition

solver diagnostic file
krylov_solver_output_file string krylov_solver.dat Output name for Krylov solver

diagnostic file
useParallelDirectSolver integer 0 0-no/1-yes
useParallelCoarseSolver integer 0 0-no/1-yes
numCoarseProcs integer all available number of processors for the coarse problem
useSuperLUDist integer 0 0-no/1-yes: whether to use SuperLU-Dist
numProcRowSuperLUDist integer number of rows in SuperLU-Dist process grid
identify_low_quality_elements bool false identify poorly shaped elements for

special attention by solver
max_element_condition double Infinity condition above which to consider

element low quality
reportZeroDiagonals integer 0 0-no/1-yes

66

constrain_rbms Tells GDSW to numerically constrain rigid body modes of a structure in
order to do a static solution of a free floating structure. Must be used in conjunction
with the FilterRBMLoad parameter to ensure no net rigid body load on the
constrained structure. The rigid body modes associated with x, y, z, rotx, roty,
rotz can be selectively constrained, as can p the pressure degree of freedom in
acoustic analysis. See Section 7.3.19 for more details on this use case.

max_numterm_C1 Constraints for the GDSW solver are classified by two types:

Type 1: simple constraints like those applied by an Rbar, tied contact, or rigid
surfaces.

Type 2: more complex, averaging constraints like those in an RBE3.

Type 1 constraints have few terms, and Type 2 constraints have many terms in each
constraint equation. Solution of problems with Type 2 constraints using Type 1
methods is possible and desirable if they are small enough, but the memory
requirements could be prohibitive if the number of terms N in any constraint
equation is too large. Specifically, storage of a dense matrix with at least N2 terms
would likely be required. The parameter max_numterm_C1 specifies the maximum
number of terms that can appear in a Type 1 constraint following a constraint
pre-processing step. Constraints with more than max_numterm_C1 terms are then
considered to be Type 2. The algorithm used to enforce Type 2 constraints in the
preconditioner is generally not as efficient as the one for Type 1 constraints. If
feasible, avoiding Type 2 constraints by increasing the max_numterm_C1 in
conjunction with a multiplicative coarse correction (coarse_option=1) will lead to a
more efficient solution.

Avoiding Type 2 constraints generally reduces run times. To eliminate Type 2
constraints set the GDSW option max_numterm_C1 to a sufficiently large number.
The value that GDSW is using for max_numterm_C1 is in the dd_solverḋat file. It
is called maxNumTermsForType1Constraints. Also, in the dd_solver.dat file note
the value of maxNumNonZeros in Tran Matrix. To eliminate Type 2 constraints
max_numterm_C1 must be larger than the value of maxNumNonZeros in Tran
Matrix.

coarse_size Is used to specify a reduction strategy for the coarse problem size. There is
no need to consider this parameter for problems run on fewer than a few hundred
processors. However, as the number of processors (subdomains) becomes large,
solving the coarse problem can become a bottleneck. The default (auto)
automatically selects to use the small coarse space only if the number of processors
exceeds 1000. Specifying a small rather than a large coarse space can often reduce
the amount of memory needed by the solver.

reorder_method Allows one to specify a reordering method for a sparse direct solver.
Currently, it is only available for default_solver = direct (see Table 3-14).

67

num_GS_steps is the number of orthogonalization steps of the stored search directions.
Sometimes increasing it from its default to 2 is helpful. I know of no case of a value
larger than 2 being necessary. It turns out that num_GS_steps does not apply to
gmresClassic.

con_tolerance The GDSW solver uses a sparse LU decomposition algorithm to process
the constraint equations. This involves choosing pivot rows for numerical stability
(much like Gaussian elimination with partial pivoting). A constraint equation is
deemed linearly dependent if the magnitude of its pivot is less than con_tolerance.
The con_tolerance is the minimum acceptable ratio of the constraint pivot to the
maximum matrix pivot. The con_tolerance can viewed as a dimensionless parameter
associated with numerical round off. The number of numerically redundant
constraints in a model will typically be reduced as the con_tolerance is increased.
Excessively high con_tolerance values could start to remove legitimate constraints.

Messages of the form,

min/max pivot for constraint factorization = some number
You may want to consider increasing the con_tolerance
parameter in the GDSW solver block.

are issued if the ratio of magnitudes of the smallest to largest pivots is less than 0.01.
This provides a recommendation to carefully examine the constraints in the model for
any potential problems. Additionally, a message will be written if there exists
constraints on the cusp of being removed as redundant. Again presence of such
nearly redundant constraints should be investigated closely for correctness.

Redundant or nearly redundant constraints can be generated in a variety of
circumstances. For example a closed loop of Rbars, Rbars between nodes of a rigid
set, or overlapping rigid sets. Although the SD constraint filtering algorithm is
designed to detect and handle such redundancies it is strongly recommended that
redundant constraint be avoided in model definition as much as possible. See
Section 2.9 for more details.

scale_option There are presently two options for matrix scaling in the GDSW solver.
Including scale_option yes or, equivalently, scale_option 1 in the GDSW solver
block will apply symmetric diagonal scaling to all matrices prior to them being
passed to Esmond Ng’s sparse direct solver. Notice for parallel runs that both the
subdomain matrices and the coarse problem matrix will be scaled. In exact
arithmetic, this option should have no effect on the number of iterations for each
solve of a parallel run.

diag_scaling Including diag_scaling diagonal in the solver block will apply symmetric
diagonal scaling to the original operator matrix and is not tied to a specific sparse
direct solver. In contrast to the scale_option parameter, this parameter changes the
number of iterations for each solve of a parallel run since GDSW is solving the scaled
problem DADy =Db to a specified relative residual tolerance rather than the

68

original problem Ax= b (note substitution of x=Dy, where D is a diagonal scaling
matrix) for that same tolerance.

coarsening_ratio Is a target ratio between the number of subdomains prior to and after
coarsening by the multilevel solver. For example, if there are originally 8000
subdomains (processors) and coarsening_ratio is chosen as 100, then the number
of subdomains after coarsening will be 80.

maxCoarseLevels Is the maximum number of coarse levels allowed by the multilevel
solver. For a standard 2-level method this parameter has a value of 1.

maxCoarseSize Is the largest size for the coarsest problem allowed before another level of
coarsening is made. The solver parameter maxCoarseLevels takes precedence over
maxCoarseSize.

enforceActualResidual This option is used to enable strict enforcement of the solver
tolerance. If needed, iterative refinement steps are taken within the solver in an
attempt to satisfy the convergence criterion. It should be noted that it may not be
possible to drive the relative residual to values no greater than the solver tolerance.
This can happen when the problem is poorly conditioned and/or the requested solver
tolerance is too small. An error message is issued and the analysis stops if the
specified solver tolerance cannot be achieved.

graphPartitioner Specifies which graph partitioning software to use when coarsening the
subdomains.

num_vectors_keep applies to the classic version of GMRES
(krylov_method gmresClassic). The parameter orthog (default 1000) controls the
number of stored search directions. We store search directions in order to make the
linear solver faster. More is not always better. The point to understand is which
search directions are stored. The first 1000 search directions are stored. On later
solves, the first 900 are saved and recycled. 100 search directions from the current
solve are used. The number 900 is the default value of num_vectors_keep.
Sometimes the solution has changed significantly and none of the old search help the
solver. num_vectors_keep= 0 tells GDSW to never recycle any of the stored search
directions between solves.

num_GS_step_gmres is the parameter for the Krylov method gmresClassic
corresponding to the num_GS_steps for other Krylov methods.

useParallelDirectSolver Whether to use parallel sparse direct solver for the whole
problem. Best suited to directfrf solution case.

useParallelCoarseSolver Whether to use a parallel sparse direct solver for the coarse
problem. This can be helpful whenever the coarse problem is large enough that its
single-processor solution becomes a bottleneck.

numCoarseProcs Number of processors to use if useParallelCoarseSolver = yes.

69

reportZeroDiags This can be an integer, or it can be set to yes or no. The default is no
(or 0). If reportZeroDiags is set to yes, then the global node numbers corresponding
to degrees of freedom in the coefficient matrix with zero diagonals (and typically zero
rows and columns) are output in the file node_zero.dat. Preconditioning matrices
with zero diagonals is more difficult. Also, a zero diagonal might indicate a modeling
error. In either case, it can be useful to have more information about these nodes.

useSuperLUDist Whether to use SuperLU-Dist parallel sparse direct solver even if Cluster
Pardiso is available. Applies to both the full problem (useParallelDirectSolver
and coarse problem (useParallelCoarseSolver) cases.

numProcRowSuperLUDist SuperLU-Dist uses a rectangular grid of processes. This
option allows the user to override the default choice, which is to make the number of
rows about equal to the number of columns. The parameter is ignored unless it
divides the total number of processors. It has been suggested that for large problems,
the number of columns should be larger than the number of rows, but we have not
yet tested cases where this choice proved to be beneficial.

The generalized conjugate residual (GCR) version of right preconditioned GMRES is the
default Krylov method. GCR has the limitation that orthog must be at least as large as
max_iter. On the other hand with gmresClassic max_iter and orthog may be specified
independently.

3.5.1. Options

The GDSW section specifies GDSW linear solver parameters for all the solution cases.
Different solution cases may call for different parameters. For example, an eigenvalue
problem may use a shift parameter to eliminate rigid body modes, but a statics analysis
cannot shift. Linear solver parameters for an individual solution case are set using the
solver_options keyword in the solution case, and adding the corresponding
solver_options section.

The solver_options sections allow multiple definitions of the parameter. Each
“solver_options” section may be called out from a separate case in a multicase solution
block as illustrated in Input input 3.1. A “solver_options” section applies only to the
GDSW solver.

Note that cases using a solver_options section will ignore any “global” options defined in
the GDSW section, and will instead use the internal GDSW defaults for any options that are
not explicitly defined.

Solution
case preload

statics
solver_options for_preload
load=10

70

case eig
eigen

nmodes=100
solver_options for_eig

End
Solver_options for_preload

solver_tol = 1e-4
constrain_RBMs="x y z"

End
Solver_options for_eig

solver_tol = 1e-8
End

Input 3.1. Multiple Solver Options Example

3.5.2. Diagnostics

There is a variety of solver diagnostic information output to the files dd_solver.dat and
krylov_solver.dat. Here we describe six different measurements of solution accuracy.

Note: the default names of the dd and Krylov solver diagnostic files (“dd_solver.dat” and
“krylov_solver.dat”) can be overridden by the dd_solver_output_file and
krylov_solver_output_file options in the GDSW and solver_options sections.

actual final residual Let’s say we want to solve the linear system Ax= b for the vector of
unknowns x given the right-hand side vector b. If xa is the approximate solution from
the solver, then the actual final residual is ‖b−Axa‖, where ‖b‖ denotes the 2-norm
of b. The actual final residual is reported in krylov_solver.dat after each solve.

actual relative residual This is ‖b−Axa‖/‖b‖ and shows up in column 6 of dd_solver.dat.
In other words, this is the actual final residual divided by the norm of right-hand side
vector b.

recursive final residual During GMRES or CG iterations, we can recursively calculate
b−Axa without having to directly calculate Axa (for efficiency reasons). In exact
arithmetic the actual and recursive finals residuals are identical, but in practice they
can be different because of round off errors. If the effects of round off are not too big,
then the actual and recursive final residuals should be close. The recursive final
residual is reported after each solve in krylov_solver.dat.

recursive relative residual This is the recursive final residual divided by ‖b‖ and shows up
in column 5 of dd_solver.dat.

71

constraint error residual The constraint equations for a problem can be expressed as
Cx= 0, where C is the constraint matrix. The constraint error residual is a
normalized measure of Cxa and should be small relative to 1 if the approximate
solution xa satisfies the constraints well. This residual is reported after each solve in
krylov_solver.dat.

equilibrium error For problems with constraint equations, we solve the linear system[
A CT

C 0

]{
x
λ

}
=
{
b
0
}
, where x is the vector of unknowns, λ is the vector of Lagrange

multipliers, and CT denotes the transpose of the constraint matrix C. For the
approximate solution vector xa, the equilibrium error is ‖b−Axa−CTλ‖ and is
reported after each solve in krylov_solver.dat. In the absence of round off errors, the
equilibrium error and the actual final residual should be identical.

All these residual measures may be more than is usually of interest, but they can provide
valuable information for cases when solver convergence is an issue.

Picking a suitable solver tolerance for GDSW or any other iterative solvers requires close
attention. If the solver tolerance is too high, then simulation results may not have sufficient
accuracy. Likewise, if the solver tolerance is too low, then more analysis time may be spent
obtaining a needlessly over-accurate solution. Solving a problem with two or more values
for the solver tolerance can be useful to help avoid unnecessarily accurate solves and to also
ensure that the solves are accurate enough. For example, let’s say you do a modal analysis
with a solver tolerance of 1e-4 and 1e-5. If you don’t see a concerning change in the modal
frequencies, then either choice for the solver tolerance is probably fine for the modal
frequencies themselves. If, however, the modal solution is used as the basis for a subsequent
analysis such as modal transient, then it is recommended that the effects of solver tolerance
on the final results also be considered. Similar comments regarding the choice of a solver
tolerance also hold for other solution cases such as direct transient analysis.

We could provide users with estimates for how small a solver tolerance is needed to
guarantee a certain measure of accuracy, but these estimates would usually be way too
pessimistic to be of any practical value.

Additional details and troubleshooting strategies for the GDSW solver can be found in
§3.5.3 and documentation available on the compsim.sandia.gov website. Relevant
documentation includes GDSW 101 and the GDSW Solver Tutorial. Solver strategies for
dealing with poor mesh decompositions caused by the presence of constraints equations or
multiple physics (i.e. structural-acoustics problems) are described in the GDSW Solver
Tutorial. These include rebalancing algorithms internal to the solver that can be accessed
using GDSW solver parameters. We hope this will provide a useful interim solution for
challenging problems prior to the deployment of alternative decomposition tools that
effectively address these issues prior to the solution phase. Input 3.2 provides
recommended options for minimum memory use.

GDSW
overlap=0
max_iter=50 // set to minimum required for a solution

72

krylov_method = gmresClassic
orthog=0
precision_option_O=single
precision_option_coarse=single

END

Input 3.2. Minimum Memory Recommended Options. These options, while
not usually optimal for speed, may use the lowest memory.

Table 3-16. – GDSW Section Options. (Supplemental Output)

Variable Values Default Description
prt_coarse integer 0 0-no/1-yes: print coarse matrix
prt_constraint integer 0 0-no/1-yes: print constraint matrix
prt_memory integer 0 0-no/1-yes: print memory information
prt_timing integer 0 0-no/1-yes: print timing information
prt_interior integer 0 0-no/1-yes: print interior matrices
prt_overlap integer 0 0-no/1-yes: print overlap matrices
write_orthog_data integer 0 0-no/1-yes: write orthogonalization data to file

3.5.3. Troubleshooting

Ideally, the linear solver should always return a solution that satisfies the requested
accuracy in terms of the relative residual tolerance (10−6 by default). This subsection
provides some troubleshooting guidelines for situations when this is not the case.
Additional information is available at compsim.sandia.gov in the Sierra/SD online
documentation GDSW Solver Tutorial and GDSW 101. If problems persist, please submit
a Sierra help ticket or reach out to a member of the Sierra/SD development team for
assistance.

• Default Solver Parameters: In case of solver convergence problems, it is
recommended that one first verify that the default solver parameters do not work. A
notable exception is for problem types like structural acoustics where a smaller solver
tolerance than the default may be needed to obtain accurate structural and acoustic
responses.

• Negative Shift for Modal Analyses: A common mistake is to not specify a
negative shift for modal analyses of structures with no essential boundary conditions.
If one or more rigid body modes are present, then the stiffness matrix will be singular
and the solver will likely have problems converging except in special cases (see
Singular Solves bullet below). The recommended shift is −(2πf)2, where f is an
estimate of the natural frequency (in Hz) of the first flexible mode. Of course the

73

modes are not known in advance. The point is that the shift does not need to be an
accurate estimate. For modeling an ordinary (larger than a paper clip, smaller than a
house) steel component in Imperial units −106 almost always works. Caution:
specifying a negative shift that is too large in magnitude may help the linear solver,
but it can cause the algorithm that solves the eigenvalue problem to either require
too many linear solves or not converge at all.

• Memory Considerations: The linear solver requires that enough memory be
available to store the factorizations of subdomain and coarse space matrices. If the
subdomain or coarse matrices are too large, then the memory capacity of the
computing resource will be exceeded and a run will fail. There are a number of
different ways to address such problems. First, one may request a smaller number of
processors per compute node. For example, the CTS-1 machine eclipse has 36 cores
per compute node, but one may request that only half or even a smaller number of
cores be used per node. This has the effect of providing more memory for each
subdomain (MPI rank). In the same spirit, another option is to run the problem on a
larger number of processors. This will result in smaller subdomain matrices, but the
size of the coarse matrix will increase. For large problems, it may be necessary to use
a second coarse level to limit the coarse matrix size. Memory resources might also be
exceeded by the storage of search directions used by the Krylov method (e.g.
GMRES). The default maximum number of iterations is 1000, and reducing this
number will result in memory savings. Additional information on memory usage is
available in the online documentation GDSW Memory Use Tutorial.

• Convergence Issues: Due to the limitations of finite precision arithmetic, it may
not always be possible to provide a solution which satisfies the specified relative
residual tolerance. This is especially the case for poorly conditioned linear systems or
unrealistically small solver tolerances. Discussion of this topic continues in the online
document Solver Accuracy Notes

Increasing the maximum number of iterations is one simple option that can result in
successful solves. Other options for improving convergence are described below in
separate bullets. If convergence to the specified tolerance still cannot be achieved,
then one option is to increase the relative residual tolerance until the solves are
successful. To confirm that the quantities of interest have converged, one or more
additional runs with even smaller tolerance are recommended.

• Subdomain Overlap: The default value of the overlap solver parameter is two.
This means that the original subdomains are extended by two layers of elements
when determining their overlap. Increasing the overlap often reduces the number of
iterations needed for convergence, but the memory requirements increase and each
iteration will require more time. Try a value for overlap of 3, 4, or more and see what
effects it has. Even larger values of overlap can be used for models with only shell
elements due to the reduced demands on the subdomain solver.

• Static Condensation: For non direct frequency response problems, the linear solver
eliminates subdomain interior residuals at each iteration by default and solves the

74

resulting Schur complement system of equations. For models with higher-order
elements (i.e. polynomial degree greater than 2), it is recommended that the
SC_option parameter be set to none since elimination of residuals interior to the
subdomain can be problematic (i.e. effects of round off errors can be more
pronounced). Similar concerns are present for direct frequency response problems,
but the default option for such problems is none.

• Frequency Response Analysis: The iterative solution of direct frequency response
problems can be challenging. The coefficient matrix K+ iωC−ω2M can be both
indefinite and complex depending on the input circular frequency ω and the damping
matrix C. A more thorough discussion of trouble shooting the Helmholtz linear
solver41 is in the Sierra/SD How To manual in section Frequency response linear
solver.

A distributed memory sparse direct solver is recommended if the problem is not too
large (to fit in memory). A direct solver works well for structures that are not blocky
and shell element models. In the GDSW solver block set useParallelDirectSolver
= yes. If available, this uses the Intel code Cluster Pardiso. Otherwise,
SuperLU-Dist is used. If it is desired to use SuperLU-Dist on a platform where
Cluster Pardiso is available, the option useSuperLUDist = yes must be specified.

If the distributed memory sparse direct solver option is not viable, then convergence
may be improved as the number of processors increases. This leads to smaller
subdomains and better performance of the coarse part of the GDSW preconditioner.
Some users have also seen improved convergence by using the non-default solver
parameter settings orthogH = 0 and precondUpdateFreq = 1. If the problem
already has a fair amount of damping, it may also help to set structural_damping
= 0. This manual documents the interface 3.5.5.

Fiscal year 2021 planned work includes the capability to solve for multiple
subdomains per MPI process, which should improve performance without the need to
run on more processors.

• Constraint Equations: Certain types of constraint equations like those introduced
by RBE3 elements can cause challenges for the linear solver (see earlier discussion of
the max_numterm_C1 solver parameter, Type 1 constraints, and Type 2 constraints).
Models with Type 2 constraints are generally harder to solve than those without
them. Two lines in the solver output file dd_solver.dat relevant to avoiding Type 2
constraints are maxNumNonZeros in Tran Matrix and
maxNumTermsForType1Constraints. The current value of the max_numterm_C1
solver parameter is reported by maxNumTermsForType1Constraints. Type 2
constraints can be avoided by setting max_numterm_C1 to be no less than
maxNumNonZeros in Tran Matrix, but in some cases this can lead to excessive
memory requirements for the solver.

Another source of potential difficulty is the presence of dependent or nearly
dependent constraints. This means that the coefficient matrix Ĉ in the constraint
equations Ĉx= 0 has either an infinite or large condition number. There are filters

75

inside of Sierra/SD to eliminate linearly dependent constraints, but some may still be
passed to the solver. The solver also identifies and eliminates dependent or nearly
dependent constraints, but this is not always foolproof. It is advised that an analyst
carefully check their model’s contact definitions to avoid potential problems in terms
of model correctness or for the linear solver. Additional information on constraint
equations and their interactions with the linear solver is available in the online
documentation Constraints.

• Singular Solves: The stiffness matrix for a structure with no essential boundary
conditions is singular. Thus, static analyses or modal analyses with a zero shift
require special considerations. First, any rigid body mode component of the applied
loads must be removed (see FilterRbmLoad and num_rigid_mode in the Parameters
section). The GDSW solver is able to solve singular systems, but it is important that
the rigid body modes actually exist. For example, consider a model with curved
surfaces that are connected using node-face tied surfaces. If a dependent node is not
located on the independent surface, then one or more of the rotational rigid body
modes will be lost. If the solver expects there to be six rigid body modes but there
are say only three, then solver convergence problems are likely to occur. To avoid this
problem, ensure that your model does indeed have the specified rigid body modes.

• Very Small Solver Tolerances: As noted earlier, it may not be possible for the
solver to provide a solution which satisfies the requested relative residual tolerance.
Nevertheless, there are some situations where it may be possible to reduce the actual
relative residual below what is possible using default solver parameters. Sierra/SD
has a guardrail to error out if the actual relative residual is more than 100 times of
that requested (see linear_solver_bailout_factor in the Parameters section). By
increasing this parameter while reducing the solver tolerance, it may be possible to
reduce the actual relative residuals for challenging problems like structural acoustics.

• Scalability: If you add prt_debug=1 or prt_debug=yes in the GDSW section, then
the information needed to measure the load balance is written to a file. The file name
is subdomainData.dat. A row of data in the subdomainData file has 8 columns of
integers. There is one row per subdomain (or MPI rank or core). Typically, the
integers in each column are defined as follows.

1. Interior unknowns (i.e. number of unknowns for static condensation).

2. Non-zeros in the factors of the interior matrix.

3. Unknowns on subdomain boundary.

4. Owned unknowns on subdomain boundary.

5. Unknowns in subdomain.

6. Owned unknowns in subdomain.

7. Unknowns in overlapping subdomain.

8. Non-zeros in the factors of the overlap matrix.

76

In the special case of a diagonal preconditioner (preconditioner_type=DIAG), only 2
integers are printed.

1. Unknowns in subdomain.

2. Owned unknowns in subdomain.

Each iteration sometimes accesses each of these matrices a constant number of times.
Often times the non-zeros in the factors of the overlap matrix predict the load
balance. Larger numbers are generally more important. If the interior unknowns are
eliminated, then non-zeros in the factors of the interior matrix will sometimes predict
the load balance. The unknowns in a subdomain is governs the load balance of
matters related to orthog. As orthog or orthogH increases, the influence of the
unknowns per subdomain increases.

3.5.4. Mathematical Conditioning Issues

The performance of the solver is closely tied to the mathematical conditioning of the
equation system it is solving. Conditioning can be thought of as the ratio of the largest
eigenvalue of the system to the smallest eigenvalue. The larger this ratio becomes the more
difficult it will be to solve the system and the larger potential error there will be in the
solution.

Many model features can increase (or worsen) model conditioning.

• Rigid body modes (which have zero eigenvalues) are a special case which is handled as
carefully as is theoretically possible, but which nonetheless have robustness problems.

• Mesh refinement increases gradients.

• Poorly shaped elements can lead to ill conditioned linear systems

• Understanding Type 1 versus Type 2 constraints as discussed in the definition of the
GDSW option max_numterm_C1 can lead to substantial performance improvements.

• Models in which a stiff material abuts a soft material are poorly conditioned.

• Mixtures of high density and low density components.

• Meshes with mixtures of solid and structural elements.

A poorly conditioned system can cause difficulties for the solver, both from an accuracy
and robustness standpoint.

• Long solve times or many iterations required for convergence

• Difficulty obtaining a low target residual during the solve

• Large difference between the ’recursive’ and ’actual’ residuals reported by the solver.
This can also indicate the solver result has lower accuracy than intended.

• Significant localized errors in the result obtained at some nodes

77

3.5.5. Frequency Response Functions

Several additional SD training documents41 and presentations describe the solver behavior,
debugging, and usage guidelines in more detail. See the Sierra/SD training documents on
’GDSW Solver Accuracy Notes’, ’GDSW 101’, ’GDSW Memory Use Tutorial.

3.5.6. Parameters

SubdomainData is described in Section 3.5.3.

In Table 3-19 Hprecond’s option custom preconditions by

−ω2(αM + iβM)M + iωC+ (αK + iβK)K,

As usual i=
√
−1, ω is the circular frequency of excitation, and M , C and K are the mass,

damping, and stiffness matrices, respectively. Here β and γ are the viscous damping and
structural damping coefficients. Experience with the custom preconditioner is documented
elsewhere.41 The custom preconditioner can reproduce the other preconditioners. The
non-zero parameters for the other preconditioning options are αK = 1 for stiffness, αK = 1,
αM =−1 for Laird-Giles, αK = 1, αM = 1, βM =−γ for shifted Laplacian, and αK = 1,
βK = γ+βω, αM = 1 for operator. Using the stiffness preconditioning option for ω near
zero and for structures with rigid body modes is discouraged due to the near singularity of
K.

78

Table 3-17. – GDSW Section Options (Advanced).

Variable Values Default Description
version integer 2 GDSW version
num_sub_per_proc integer 1 number of subdomains per processor
num_iter_improve_I integer 0 number of iterative improvement steps for

I_solver = LDM and precision_option_I = single
num_iter_improve_O integer 0 number of iterative improvement steps for

O_solver = LDM and precision_option_I = single
num_iter_improve_coarse integer 0 number of iterative improvement steps for

coarse_solver = LDM and
and precision_option_coarse = single

overlap_method integer 0 0 (graph-based), 1 (element-based)
cull_method integer 1 0 - none: reach maximum and then stop

1 - simple: reach maximum and then remove
most recent ones
2 - eigen: cull search directions
based on solution to eigenvalue problem

reduced_option_coarse integer 3 same as reduced_option but for subregions
preconditioner_type integer 2 1 (BDDC), 2 (GDSW)

3 (DIAG), 4 (NODAL)
interface_precond integer 0 0 - do not require interface preconditioner

1 - require interface preconditioner
coarse_connectivity_option integer 1 algorithm number for coarse elem connect
viscous_damping real 0 viscous damping coefficient for preconditioner operator
structural_damping real 0.12 structural damping coefficient for preconditioner operator
rbm_tolerance real 1e-12 tolerance used to flag rigid body

modes in dd_solver.dat. Recom-
mend usage of the rbmtolerance in
the parameters section.

con_tolerance real 2.5e-9 singularity tolerance for processing constraints
con_row_tolerance real 1e-1 pivoting tolerance for processing constrains
ML_max_level integer 7 maximum number of levels for multilevel local solver
ML_max_coarse integer 1000 maximum number of unknowns for coarsest level
use_epetra_coarse integer 0 0 - do not use Epetra matrices for coarse correction

1 - use Epetra matrices for coarse correction
parmetis_option integer 0 Parmetis option for coarse problem partitioning:

0 (PartKway), 1 (PartGeomKway)
diag_scaling string none none - no scaling of operator matrix

diagonal - symmetric diagonal scaling (diagonal-based)
column - symmetric diagonal scaling (column-based)

correction_option integer 0 0 (standard), 1 (MINRES)

79

Table 3-18. – GDSW Section Print Options.

Variable Values Default Description
ML_print_coarse integer 0 0 - no output

1 - print coarse stiffness matrix
ML_print_Phi integer 0 0 - no output

1 - print interpolation matrix
pardiso_message_level integer 0 0 - no messages

1 - print messages
prt_matrix integer 0 0 - no output

1 - print out matrix in 3-column format
2 - print out matrix in CSR format

prt_subdomain_coarse integer 0 0 - do not print subdomain coarse matrix
1 - print subdomain coarse matrix

prt_subdomain_PU integer 0 0 - do not print sub partition of unity
1 - print sub partition of unity

prt_stabilization integer 0 0 - do not print coarse stabilization matrices
1 - print coarse stabilization matrices

prt_interior integer 0 0 - do not print interior matrices
1 - print interior matrices

prt_memory integer 0 0 - do not print gdsw memory diagnostics
1 - print gdsw memory diagnostics

prt_debug integer 0 0 - do not print subdomainData.dat
1 - print subdomainData.dat

write_orthog_data integer 0 0 - do not write orthogonalization data to file
1 - write orthogonalization data to file
1 - ignore memory reporting

ML_print_coarse integer 0 0 - do not print coarse stiffness matrix
1 - print coarse stiffness matrix

ML_print_Phi integer 0 0 - do not print interpolation matrix
1 - print interpolation matrix

80

Table 3-19. – GDSW Section Options (Helmholtz).

Variable Values Default Description
Hprecond integer 5 Helmholtz preconditioner:

0-stiffness: Stiffness based
1-LG: Laird-Giles
2-custom: Custom
3-SL: shifted Laplacian
5-operator: Operator with damping

orthogH integer 20 maximum number of stored search directions
for Helmholtz problems

max_previous_sols integer 0 maximum number of previous solutions
used to accelerate convergence

precondUpdateFreq integer 10 frequency to update preconditioner as
as operator changes

viscous_damping real 0 viscous damping coefficient (see text)
structural_damping real 0.12 structural damping coefficient (see text)
alphaK real 0 custom precond stiffness coefficient (see text)
betaK real 0 custom precond stiffness coefficient (see text)
alphaM real 0 custom precond mass coefficient (see text)
betaM real 0 custom precond mass coefficient (see text)
krylov_methodH integer 5 same as krylov_method but

for Helmholtz problems
SC_optionH integer 0 same as SC_option but for Helmholtz problems

Table 3-20. – GDSW Section Options (Solvers).

Variable Values Default Description
default_solver integer 1 1-direct: Esmond Ng’s sparse direct solver

2-LDM: Clark’s LDM’ sparse direct solver
6-NoPivot: Clark’s sparse direct solver

PTAP_solver integer 1 solver for conjugate gradient matrix
0-diag: diagonal (holds in exact arithmetic)
1-full: full ΦTAΦ matrix

81

3.6. Sensitivity

Sensitivity to parameters is available for modal analysis,42 Craig-Bampton reduction
(CBR), static solutions and some transient solutions. An example input deck for modal
analysis is given in the Section 10. In the case of CBR analysis, we refer to sections 4.4 and
4.4.1 for a detailed discussion of how to perform sensitivity analysis. The sensitivity
section controls global parameters related to sensitivity analysis. Sensitivity analysis is not
performed in Sierra/SD unless this section is present in the input deck. The following
example illustrates the legal keywords. Valid keywords are identified in Table 3-21. Lists of
numbers should follow the rules for integer lists detailed in Section 3.1.

SENSITIVITY
values all
vectors 1,3,5,7:9
iterations 8
tolerance 1e-7
Attune
AttuneNodeset sensitivity_nodeset

END

Keyword argument Description
values “all”/“none” or list eigenvalue selection
vectors “all”/“none” or list eigenvector selection

iterations integer number of eigenvector iterations
tolerance float convergence tolerance for eigenvectors
attune n/a enable attune output

AttuneNodeset string nodeset for reduced model

Table 3-21. – Sensitivity Analysis Keywords.

The keywords values and vectors are used to control what types of sensitivities are
computed for which cases in the analysis. In modal analysis, these refer to the eigenvalues
and eigenvectors, respectively, and the case numbers represent the mode numbers. In static
analysis, vectors refers to the displacement vector results, and values has no meaning.
Also, in modal analysis, eigenvalue sensitivities are always computed when eigenvector
sensitivities are requested for a mode. Allowable values are:

vectors all // compute for all cases/modes
vectors none // compute for no cases/modes
vectors 1:3,5 // range of cases/modes

Omitting the keyword vectors (or values) is equivalent to not requesting those
sensitivities; in other words, it is equivalent to vectors none. The keywords iterations
and tolerance are used in computing eigenvector derivatives. The default values are 10

82

and 1.0e-06, respectively. If the eigenvector sensitivity approximation fails to converge to
the desired tolerance in the specified number of iterations, a fatal error occurs.

3.6.1. Attune

An interface is provided to the Attune test/analysis correlation code supplied by ATA
engineering. The data is written to an external text file, with a file name based on the input
(*.inp) file name. A surrogate of the finite element model is determined using eigenvectors.
Attune applies only to eigen sensitivity analysis, and the eigenvalues must be selected using
values. For output through this interface, the following two parameters must be defined.

attune: request interface output.

AttuneNodeset: identification of a nodeset to be associated with the test degrees of
freedom. Note that even if test mode shapes are not available, Attune requires the
definition of a reduced space model (using this nodeset). It is required for mode
tracking.

To use Attune , please refer to the ATA website and on line documentation.5

3.6.1.1. Sensitivity Output Sensitivity results are output to the same file as the nominal
results. The arrangement of the output depends on the analysis. The statics nominal result
is output, followed by the sensitivity result for each parameter. In eigenvalue problems, the
nominal frequencies and eigenvectors are output, followed by the eigenvalue and eigenvector
sensitivities with respect to the first parameter, the second parameter, etc. The eigenvalue
sensitivities are placed in the time field of each output record, like the frequencies are for
the nominal modal parameters. For transient analysis, the nominal response for each time
step is output, followed by the sensitivities for that time step. Then the nominal results for
the next time step are output. See Figure 3-4 for an example of eigenvalue sensitivity.

The change of parameter (or tolerance) may be specified in any of three ways.

1. Specify an absolute tolerance by entering “+/-” followed by the number, e.g. “+/-
1.05e-4”.

2. Specify a relative tolerance by entering “+/-” followed by a number and the keyword
“percent”. Each field should be separated by a space. For example,

56 +/- 2.0 percent

3. Use the default tolerance by entering only the “+/-” by itself. The default tolerance
is 2 percent.

The selection of parameters is controlled by the inclusion of a +/- symbol following a
parameter in the input deck. Examples of valid sensitivity parameter definitions are:

83

EXPLORE> select step 4
Time = 3.504E+3 (time step 4 of 30)

EXPLORE> gvar
Time = 3.504E+3 (time step 4 of 30)
Global Time Step Variables
ModeNumber = 4.0000E+00
EigenFrequency = 3.5042E+03
EigenVectScale = 1.0000E+00
deriv_Block_1000_area = 3.9362E+03
deriv_Block_101_thickness = 1.4426E+07

The order of parameters can be determined from the global variables. It is also
available in the results file. The sensitivities may be extracted using the global
variables.

EXPLORE> times
Number of time steps = 18

Step 1) 725.3E+0
Step 2) 725.3E+0
Step 3) 3.005E+3
Step 4) 3.504E+3
Step 5) 3.504E+3
Step 6) 4.929E+3
Step 7) 602.1E+0
Step 8) 602.1E+0
Step 9) 6.512E+0
Step 10) 3.936E+3
...

The first nmodes (6 in this example) eigenvalues and vectors are associated
with the nominal structure. The next nmodes values are the dλ/dP1 values
associated with the first parameter, P1. The corresponding vectors are dφi/dP1.

Figure 3-4. – Eigen Sensitivity Example Data. In this example, both eigenvalue and eigen-
vector sensitivities are computed. The data is probed using “explore”. Global variable include
sensitivities to area in block 1000 and thickness in block 101.

84

MATERIAL 1
E 10e6 +/- 1e6 // absolute tolerance specified
density 2.59e-4 +/- // no tolerance, use default

END

BLOCK 1
area 0.10 +/- 5 percent // relative tolerance specified

END

BLOCK 2
thickness +/- 1 percent // relative to Exodus attribute

END

Loads
nodeset 1
force 0. 0. 1000 +/- 0 0 10 // tolerance for vector parameter

end

Note that the tolerances are specified on the parameters where they normally appear in the
input deck. That is, these definitions do not appear in the sensitivity section.

The sensitivity quantities output to the exodus file are derivatives, and can be used to
compute a first-order approximation to the change in an output quantity with respect to a
parameter. For example, the change in an eigenvalue λ that depends on a parameter p can
be approximated

λ(p+ ∆p) = λ(p) + dλ

dp
∆p+o(∆p).

The quantity written to the exodus output is dλ/dp. The tables printed in the results and
standard output also include the linear approximation to the change in λ,

dλ

dp
∆p.

This approximation may be inaccurate if ∆p is too large. The size of ∆p is specified by the
user in the input deck for each parameter included in the sensitivity study.

3.6.1.2. Derived Output Quantities
The sensitivity analysis methods use a semi-analytic method. Primary variables (usually
displacement) are computed in terms of changes in stiffness and mass matrices, and
resultant displacements are then computed analytically. See Figure 3-5. Many other output
quantities are computed in terms of these primary variables using the standard output
routines. Most of these output quantities depend linearly on the primary variables. For
example, computation of the derivatives of strain can be readily computed using the chain

85

rule, and may also employ the same procedures for strain computation. Let ε= κu define
the strain/displacement relationship at a given point in the model. Here κ is a constant.

dε

dp
= dε

du

du

dp

= κ
du

dp

Code that computes ε from u may be used to compute dε
dp from du

dp .

Other variables are not linear with respect to the primary variables. For example, the
strain energy or the von Mises stress include quadratic terms in displacement.

Es = uTKu

dEs
dp

= dEs
du

du

dp

= uTK
du

dp

These variables may not use the same code paths. Data is written, but is not correct for
these variables.

Statics

Ku = f

∆u = K−1(∆f −∆Ku)

Eigen

(K−λM)φ = 0
∆λi = φT∆Kφ−λφT∆Mφ

Figure 3-5. – Semi-Analytic Methods for Sensitivity Analysis.

3.6.1.3. Solution Types Sensitivity analysis is available only for the solution types
shown in Table 3-22. The primary application is in eigenvalue problems where the
semi-analytic solutions can provide significant computation and accuracy benefit over a
finite difference approach.4

Table 3-22. – Sensitivity Analysis Solution Type Availability.
Name Section Description
eigen 4.9 Normal Modes
statics 4.25 Linear Statics

86

3.6.1.4. Sensitivity Limitations
1. Subsection Eigen Sensitivity Analysis section Solution Procedures of the Theory

Manual explains how sensitivity analysis may be performed using most solvers.

2. Outputs are limited to variables linear in displacement (3.6.1.2). In particular,
output of von Mises stress is output for these solutions, but is not correct. That is
the derivative of the von Mises stress is not the von Mises stress of the derivative of
the stress.

3.7. Coordinate

Local coordinate systems may be defined to orient directional materials (section 5.7.2.3),
define constraints, boundary conditions, or loads in local orientations (sections 3.9, 7.1
and 7.3), or transform outputs to a local coordinate system (sections 8.4 and 8.5). The
basic/default coordinate frame can also be explicitly referenced as coordinate “0”, if
desired.

The ability to visualize and verify correctness of coordinate system definitions is a key
element of the overall workflow. At present, support is limited to the material direction
output for anisotropic isosolid elements; see section 5.1.3.

BEGIN RECTANGULAR COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z̃ axis
XZ POINT = <real> <real> <real> # Point on X̃Z̃ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

BEGIN RECTANGULAR COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET = <nodelist> # Node on Z̃ axis
XZ POINT NODESET = <nodelist> # Node on X̃Z̃ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

Syntax 3.2. Rectangular Coordinate System Syntax

87

BEGIN CYLINDRICAL COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z̃ axis
XZ POINT = <real> <real> <real> # Optional: point on X̃Z̃ plane; sets

location of azimuthal angle theta=0
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

BEGIN CYLINDRICAL COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET = <nodelist> # Node on Z̃ axis
XZ POINT NODESET = <nodelist> # Optional: node on X̃Z̃ plane; sets

location of azimuthal angle theta=0
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

Syntax 3.3. Cylindrical Coordinate System Syntax

BEGIN SPHERICAL COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z̃ axis
XZ POINT = <real> <real> <real> # Optional: point on X̃Z̃ plane; sets

location of azimuthal angle theta=0
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

BEGIN SPHERICAL COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET = <nodelist> # Node on Z̃ axis
XZ POINT NODESET = <nodelist> # Optional: node on X̃Z̃ plane; sets

location of azimuthal angle theta=0
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

Syntax 3.4. Spherical Coordinate System Syntax

BEGIN CONICAL COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z̃ axis
XZ POINT = <real> <real> <real> # Optional: point on X̃Z̃ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
ANGLE = <real>

88

END

BEGIN CONICAL COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET = <nodelist> # Node on Z̃ axis
XZ POINT NODESET = <nodelist> # Optional: Node on X̃Z̃ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
ANGLE = <real>

END

Syntax 3.5. Conical Coordinate System Syntax

BEGIN ELLIPSOIDAL COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z̃ axis
XZ POINT = <real> <real> <real> # Point on X̃Z̃ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
AXIS STRETCHING = <real> <real> <real> #angle in radians

END

BEGIN ELLIPSOIDAL COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single node nodeset
Z POINT NODESET = <nodelist>
XZ POINT NODESET = <nodelist>
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
AXIS STRETCHING = <real> <real> <real> #angle in radians

END

Syntax 3.6. Ellipsoidal Coordinate System Syntax

The prefix to COORDINATE SYSTEM specifies the type of local coordinate system. Supported
types are: RECTANGULAR (Cartesian), CYLINDRICAL (Polar), SPHERICAL, CONICAL (a cylindrical
system with an aperture angle), and ELLIPSOIDAL (a spherical system stretched by
AXIS STRETCHING).

A local element coordinate system is defined by a set of three control points. These points
may be defined using absolute locations (ORIGIN, Z POINT, XZ POINT) or using nodelists in
the mesh file (ORIGIN NODESET, Z POINT NODESET, XZ POINT NODESET) that contain exactly
one node each. The control points define a local X̃ Ỹ Z̃ Cartesian coordinate system
centered at the coordinate system origin. For cylindrical, spherical, conical, and ellipsoidal
systems the orientation of the basis vectors at individual nodes and elements is spatially
dependent. In this documentation, the local basis vectors at each node or element will be
denoted as r̂, ŝ, and t̂.

89

Note: coordinate systems defined by nodesets use only the initial location of the nodes and
do not update with model displacement.

• ORIGIN: Required. Specifies the origin location for the new coordinate system.
• Z POINT: Required. Specifies a point on the Z̃ axis for the new coordinate system.

For SPHERICAL, this defines where the zenith (polar) angle φ is 0.
• XZ POINT: Required only for RECTANGULAR and ELLIPSOIDAL. Third point to specify

the X̃Z̃-plane of the new system. Must not lie on the Z̃ axis. If not specified, an
arbitrary axis will be chosen based on the global coordinate system. For CYLINDRICAL
and SPHERICAL, this defines where the azimuthal angle θ is 0. XZ POINT also affects
behavior at ill-defined points such as the origin of SPHERICAL systems, or along the Z̃
axis of CYLINDRICAL systems (see figure 3-10).

• ANGLE (CONICAL COORDINATE SYSTEM only): Required. Defines the angle in radians to
rotate the axial direction away from the Z̃ axis (see figure 3-8).

• AXIS STRETCHING (ELLIPSOIDAL COORDINATE SYSTEM only): Required. Defines the
aspect ratio to stretch a spherical system (see figure 3-9).

• ROTATE: Processed last. Specifies a rotation (in radians) of the coordinate system
about one of its own axes. The conical system is effectively a cylindrical system with
a local rotation about the Ỹ axis. Only one rotation may be specified.

The three coordinate control points are illustrated in figure 3-6. The coordinate system
types are depicted in figures 3-7 to 3-9.

X
Y

Z

ORIGIN

Z POINTXZ POINT Z̃

X̃

Ỹ

Figure 3-6. – Coordinate system definition vectors: note that XZ POINT determines the X̃
axis, but need not lie along it, which is the case depicted in this figure.

90

Figure 3-7. – Three examples (rectangular, spherical, and cylindrical) of transformed coordi-
nate systems are given. The center of the rectangular block (6×2×3) is located at (3,−1,5),
and rotated 30 degrees about the X axis. The center of the sphere (radius of 2) is located at
(5,4,−2). The center of the cylinder (radius of 1, height of 2, and rotated 90 degrees about the
X axis) is located at (−5,2,0). The new coordinate systems are defined respectively of each of
the geometries, and are indicated by X̃ Ỹ Z̃ and the subscripts (r, s, and c).

Origin

Point on the Z̃ axis

φ
r̂t̂r̂ t̂

r̂t̂r̂ t̂

r̂
t̂

Figure 3-8. – Conical Coordinate System Definition at X̃Z̃ plane

91

Figure 3-9. – Ellipsoidal Coordinate System Using axis_stretching=(2.0, 1.1, 1.0). r̂ is red,
ŝ is green, and t̂ is blue.

Examples of rectangular, spherical, and cylindrical coordinate systems are given in
figure 3-7. In those examples, we wish to define coordinate systems for three geometries: a
brick, a sphere, and cylinder. The corresponding input deck is shown below.

begin rectangular coordinate system rectangular_system
origin 3 -1 5
z point 5 -1 5
xz point 3 0.7321 6

end
coordinate spherical coordinate system ball_like

origin 5 4 -2
z point 5 2 -2
xz point 3 4 -2

end
begin cylindrical coordinate pin_system

origin -5 2 0
z point -5 4 0
xz point -5 2 2

end

Input 3.3. Example coordinate system input

For cylindrical, conical, spherical, and ellipsoidal systems, the local basis vectors r̂, ŝ, and t̂
are not all well-defined when sampled along the Z̃ axis. At the origin, all coordinate

92

systems fall back to a local Cartesian system with r̂ along the X̃ axis, ŝ along the Ỹ axis,
and t̂ along the Z̃ axis. This is also true for the cylindrical and conical systems on the Z̃
axis. Spherical and ellipsoidal systems on the Z̃ axis will instead maintain the first vector
(r̂) pointing radially outward, the third vector (t̂) pointing along the X̃ axis, and the
second vector (ŝ) as either the positive or negative Ỹ axis (generating a right handed
system). This maintains the normal and tangential properties of the three vectors for
spherical coordinates. See figure 3-10 for a visual representation of this behavior.

Coordinate frames may also be specified in a deprecated syntax unique to Sierra/SD.
Users (i.e., affiliates in the wg-sierra-users group) that load the sierra module also gain
access to the command line tool convertCoordinateSystems. It converts a list of input
decks in place to the syntax described here. Comments are removed. To check that the
tool is included,

workstation_prompt> type convertCoordinateSystems

The Exodus mesh input file also has the ability to define local coordinate frames. These
frames will be read and available during an analysis. In the case of a coordinate frame
being defined in both the Exodus file and the input file, the input file definition will be
used, and a warning will be logged.

In spherical coordinates, it may help to consider the Cartesian frame (X̃, Ỹ , Z̃) with the
same orientation as (r,θ,φ):

X̃ = r sin(φ)cos(θ)
Ỹ = r sin(φ)sin(θ)
Z̃ = r cos(φ),

(3.1)

0≤ φ < π, 0≤ θ ≤ 2π.

If the user specifies a coordinate system in the History section, notice that its applicability
may be somewhat limited, though convenient. In particular, only a single history file is
written in each analysis, and only one coordinate frame may be outputted per node (see
section 8.4). The history file will display variables as Cartesian regardless of coordinate
choice. Table 3-23 shows the corresponding values for cylindrical and spherical coordinates.

Finally, we provide a full example of how we can use the coordinate definitions. We use the
same coordinate definitions from figure 3-7 and input 3.3, and we define the brick as block
1, the sphere as block 2, and the cylinder as block 3, respectively. We also specify a sideset
100 on the brick, a nodeset 200 on the sphere, and a nodeset 300 on the cylinder as shown
in figure 3-11. We wish to apply a radial force emanating from the middle of the cylinder,
and we want to record the output accelerations on the sphere. The corresponding input
deck is attached, with associated coordinate systems defined in input 3.3.

93

Figure 3-10. – Coordinate system behavior near the Z̃ axis. r̂ is red, ŝ is green, and t̂ is blue.

94

Coordinate History Corresponding
System Variable Coordinate

Cylindrical X r
Y θ
Z z

Spherical X r
Y θ
Z φ

Table 3-23. – Coordinate Names for history files.

Figure 3-11. – An example of how coordinate systems are used. Accelerations are measured
on the sphere (nodeset 200) due to a radial force applied on the cylinder (nodeset 300).

Loads
nodeset 300
coordinate ball_like
force = 1 0 0

end
History

nodeset 200
coordinate pin_system
accel

end

Tractions can also be specified on a particular coordinate frame, but special care is
required. We refer the reader to section 7.3.3 for using arbitrary coordinates with
tractions.

95

3.8. Function

Time, frequency and/or spatially dependent functions for transient and frequency response
analysis can be defined using the function section. The following are simple examples of
the use of a function.

FUNCTION test_func1
type LINEAR
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION poly_fun
// a pulse of duration .05
// peak value 6/7 at 1/49 sec
// pulse(t)=8*sqrt(t)-686*t^2

name "Smooth Pulse with Duration 0.05"
type POLYNOMIAL
data 0. 0.
data .5 8.
data 2. -686.

END

The function identifier string is given after function keyword. This identifier is used to
reference the function in other parts of the input deck. It can be any string, but once this
identifier could only be an integer. The keywords for these function definitions are:

1. TYPE to define the functional form,

2. NAME Additional reference information for the function. This may be printed to
error messages or other informational output regarding the function, however it is the
identifier that is always used to call the function from other parts of the input deck.

3. DATA for the functional parameters.

Other function definitions may require more parameters.

3.8.1. Function Offset/Shifts

Function input/output values can be offset and scaled. The syntax for defining these
transformations is below.

96

X|abscissa offset = <real, default=0>
Y|ordinate offset = <real, default=0>
X|abscissa scale = <real, default=1>
Y|ordinate scale = <real, default=1>

Given a function y = f(x), the transformed output would be:
y = yscale ·

[
f(xscale · [x+xoffset]) +yoffset

]
.

Note that function offsets/shifts are currently only enabled for single-input, single-output
functions. Otherwise, a warning will be issued and the offsets/shifts will be ignored.

3.8.2. Linear Functions

For linear functions, the data elements are pairs specifying the independent variable
(e.g., time) and the corresponding function value. Evaluation of the function at unspecified
points is performed via linear interpolation. In order to enforce uniqueness of the
interpolant, Sierra/SD ignores points with an independent variable value less than that of
the previous point. For example, the last point in the ignored_point function is ignored.

FUNCTION ignored_point
type linear
data 0.00 0.
data 0.01 1.
data 0.05 1.
data 0.04 0. // ignored: column 1 may not decrease

END

0.01 0.02 0.03 0.04 0.05

1.0

Figure 3-12. – Linear function "ignored_point".

Figure 3-12 shows the graph of function 3.

Extrapolation refers to evaluating the function before the first given time or after the last
given time. Linear functions use the value of the nearest data point to extrapolate. For
example, the value of the following function at 0.03 is 0.5.

97

FUNCTION extrapolation
type linear
data 0.00 0.
data 0.01 1.
data 0.02 0.5

END

Figure 3-13 shows the graph of the extrapolation function.

0.01 0.02 0.03 0.04 0.05

1.0

Figure 3-13. – Linear function "extrapolation".

If an independent variable value is listed multiple times, then the function value at that
point is the average of the specified function values. Function 5 is pictured in Figure 3-14.

FUNCTION 5
name "value3hundrethslistedtwice"
type linear
data 0.00 0.
data 0.01 1.
data 0.03 1.
data 0.03 0.5 // f(3/100)=3/4

END

0.01 0.02 0.03 0.04 0.05

1.0

Figure 3-14. – Linear function #5. "multiple_fun".

98

3.8.3. Sierra SM Piecewise Linear Functions

Some limited Sierra SM syntax is supported for specifying a piecewise linear function in
Sierra/SD. The data entered through this syntax is interpreted as a linear function, and
follows all the rules specified above. This comes with limitations. Only the piecewise
linear function type is supported, and a number of features are missing. Most
importantly, ending the function with "END FUNCTION <string>" is not supported. This
comes from an incompatibility with existing Sierra/SD syntax; "FUNCTION <string>"
happens to be valid Sierra/SD syntax in this scope and context.

Begin Function function_name
Type is Piecewise Linear
Begin Values

0.00, 0.
0.01, 1.
0.05, 1.

End Values
End

3.8.4. Functions using Tables

Functions may be specified by reference to a linearly interpolated table (as discussed in
section 3.8.19). The table must be of dimension=1. One-dimensional tables behave
identically to the linear functions described above. However, they will typically be much
faster and more memory efficient than linear functions, especially as the data size grows.

The function in the following example is a tabular representation of the data of Figure 3-13
and Function “extrapolation” above.

FUNCTION 7
type table
tablename=example7

END

Table example7
dimension=1
size=5
datafile=’example7.txt’
origin 0.0
delta .01

END

Within the datafile, “example7.txt”, the following data would be represented.

99

0.0
1.0
0.5
0.5
0.5

The linear function can be evaluated for any time, and the table is limited to the range
0-0.04. Table type functions require the tablename keyword.

3.8.5. Polynomials

The data pairs for polynomials are exponent and coefficient pairs. The independent
variable taken to any real power will always be evaluated as positive. Duplicate exponents
are handled by summing their coefficients.

FUNCTION 6
name "quadratic_polynomial"
type polynomial
data 0.0 0.
data 1.0 1.
data 2.0 0.1
data 1.0 0.5 // f(t) = 3t/2 + (t^2)/10

END

3.8.6. LogLog Functions

Loads may be applied with log log functions in frequency domain analyses. For example
log log tables are used for random vibration inputs. Option LogLog applies linear
interpolation on a log log tables plot so that only the corner frequencies need be specified.
An example follows.

FUNCTION 168
name "LogLog"
type LogLog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

100

3.8.7. SamplingRandom

The random pressure loading defined in subsection Random Pressure Loading section
Loads and Materials of the Theory Manual provides a means of applying a pressure load
with a specified spatial and temporal correlation. In many cases, the desired random
function is a function of time only. In those cases the SamplingRandom function provides a
mechanism for applying the load.

Keyword Values Default Description
type string required must be “SamplingRandom”
cutoff_freq Real required† cutoff frequency (in Hz)
omega_c (ωc) Real required† cutoff frequency (in rad/s)
deltaT Real π/ωc coarse time step
ntimes integer 5 # of terms in time interpolation
correlation_function string defaults to sin(x)/x function for time interpolation
scale_function string defaults to σ(z) = 1

†Specify either cutoff_freq or omega_c, but not both.

Table 3-24. – SamplingRandom function parameters.

Note that
ωc = 2π× cutoff_freq,

and that only one of the two parameters omega_c and cutoff_freq can be specified. More
detailed descriptions of these parameters are given in Section 7.3.15. Random time
functions can be used to specify any type of random load, including pressure loads, force
loads, acoustic loads, etc. Below we give an example for the case of an acoustic load.

LOAD
sideset 1

function = 1
acoustic_vel = 1.0

END

FUNCTION 1
type SamplingRandom
cutoff_freq 1000
deltaT 8.0e-4
ntimes 5

END

The SamplingRandom function is a special case of a zero mean, unit variance Gaussian
function. Sampling methods allow a reduced memory method of computing the time
realization. In a transient analysis, the time integration step should be less than the coarse
time step, “deltaT”. Statistics for the functions may be output by specifying
“input_summary” in the “ECHO” section of the input file (see Section 8.8).

101

3.8.8. RandomLib Functions

There are two tests of the RandomLib function. One is a verification test.

In many cases, a random load on a structure may need a spatial correlation with other
loads on the structure. The RandomLib function was created to address this need. 2

Run time parameters for “RandomLib” functions are listed in Table 3-25, and an example
is provided in input 3.4. Each parameter is described in more detail below.

The RandomLib function operates only by reading data from an external Exodus data
file. The data file is an Exodus file that contains nodal scalar boundary conditions on a
nodeset that covers the same nodes as the sideset. This nodeset is assumed to have the
name “surface_1_nodes” where the “1” in this case corresponds to sideset 1. These nodal
loads are typically generated within MATLAB code and merged with the Exodus file
definition.

Currently, this function has been applied only to apply a scalar function on the nodal
locations of a single sideset in the model. Such functions can be used to apply pressures
(which are applied as piecewise linear functions within the elements). It can also be used to
apply prescribed accelerations at the nodal locations.

Keyword Values Description
type randomlib required to specify function
interp temporal interpolation scheme

none=nearest
linear=linear interpolation

sideset int/string sideset id/name where pressures are applied

Table 3-25. – RandomLib function parameters.

function 55
type=randomlib
interp=none
sideset=1
exo_var scalar pressure

end

Input 3.4. Example RandomLib Function Specification

type The specification “type=randomlib” is required to reference the randomlib function
and its capabilities.

2The RandomLib function is an external library interface to Sierra/SD. Additional functionality and the
interface to other applications are described in separate documentation.

102

interp A restart file contains time samples of a random function. Sierra/SD references
these values at each time step to properly load the function. Figure 3-15 shows how
interpolation influences the actual value returned.

sideset Pressure is applied over a single sideset of the model. This sideset must match the
definition in the load section. 1

exo_var Specification of the name of the nodeset variable that represents the nodal
loading keyword exo_var is required. The format should be “exo_var scalar
pressure,” where ’pressure’ is the name of the variable used in the Exodus file.

−1

 1

 0

Time

RandomLib Sample Data

Salinas Sample Times

Figure 3-15. – RandomLib Temporal Interpolation. Because of different time steps in the
RandomLib data library and the Sierra/SD time step algorithm, the function value returned
depends on the time interpolation algorithm. With interp=none, the first value returned to
Sierra/SD is about -1.0, as that is the nearest time sample in the data. With interp=linear,
the value returned is about -0.6. Note that round off can cause odd behavior with interp=none,
even if the two data sets have the same fundamental time step.

1Data for the Exodus file is usually provided using specialized tools such as mkrandloadrst. A sideset
provides information about the extent of the load, and for pressure loads, it is required to identify the
faces upon which the load is applied. Actual time history data is associated with a nodeset which includes
the same nodes as the sideset.

103

3.8.9. Analytic Functions

Analytic functions can be used define complex mathematical functions directly in the input
deck. An example of the input for this type of function is:

FUNCTION sine
type analytic
evaluate expression = "sin(2 * pi * t)"

END

Sierra/SD uses the STK61 expression parser.

Analytic functions can be used in a variety of contexts such as boundary conditions,
material properties, or user output.

3.8.9.1. Analytic Expression Parser Syntax

Rules and options for composing algebraic expressions. If you choose to use the
EVALUATE EXPRESSION command line, you will need to write the algebraic expressions. The
algebraic expressions are written using a C-like format. Each algebraic expression is
terminated by a semicolon(;). The entire set of algebraic expressions, whether a single
expression or several, is enclosed in a single set of double quotes(" ").

Note: analytic function variables are case insensitive, including any local variable
definitions, and there is currently no warning for multiply-defined variables (the last
variable name “wins”), so caution should be taken to ensure that duplicate variable names
are not used.

Expressions compute an output value as a function of input values. The input value of an
expression is called an independent variable of the expression. An expression can use any
name for the expression independent variable. The examples shown here use x for the
independent variable.

Example: Return sin(x) as the value of the function.

function sinx
type is analytic
evaluate expression is "sin(x)"

end

Example: Return a piecewise linear interpolated ramp function. For x values less than 0.0
the function will return 0.0. For x values between 0.0 and 0.5 the function will return y
values linearly interpolated between 0 and 100. For x values greater than 0.5 the function
will return 100:

104

function pressure
type is analytic
evaluate expression is " \#

(x <= 0.0) ? (\#
0.0 \#

) : (\#
(x < 0.5) ? (\#
x*200.0 \#

) : (\#
100.0 \#
) \#

) \#
"

end

Operators and Functions Available within Expressions The following functionality is
currently implemented for the expressions:

Operators Valid arithmetic and Boolean operations are as follows:

Symbol Operation
+, - plus, minus
*, / times, divide
^ power
==, != equivalent, not equivalent
>, < greater/less than
>=, <= greater/less than or equal to
! not
&, |, &&, || and, or
?, : ternary if, then, else

Parentheses (), represents standard mathematical meaning of operation ordering.

Component indexing value[i], accesses the ith component of a multi-component variable
such as a vector, tensor, etc. This index is one-based. For a vector vec,

vec_x = vec [1]
vec_y = vec [2]
vec_z = vec [3]

for a symmetric tensor sym,
sym_xx = sym [1]
sym_yy = sym [2]
sym_zz = sym [3]
sym_xy = sym [4]

105

sym_yz = sym [5]
sym_zx = sym [6]

and for a full tensor full,
fu l l_xx = f u l l [1]
fu l l_yy = f u l l [2]
f u l l_z z = f u l l [3]
fu l l_xy = f u l l [4]
f u l l_yz = f u l l [5]
f u l l_zx = f u l l [6]
fu l l_yx = f u l l [7]
f u l l_zy = f u l l [8]
f u l l_xz = f u l l [9]

Math functions Valid mathematical operations are as follows:

Function Operation
abs(x) absolute value of x
mod(x,y) modulus of x|y
min(x,y) minimum value of x, y
max(x,y) maximum value of x, y
sign(x) sign operator: −1 if x is negative, 1 if positive
ipart(x) integer part of x
fpart(x) fractional part of x

Power functions Valid functions for expressions containing exponents are as follows:

Function Operation
pow(x,y) xy

pow10(x) 10x
sqrt(x)

√
x

Trigonometric functions Valid trigonometric operations are as follows:

106

Function Operation
acos(x) arccosine of x
asin(x) arcsine of x
asinh(x) inverse hyperbolic sin of x
atan(x) arctangent of x
atan2(y,x) arctangent of y/x, signs of x and y
cos(x) cosine of x
cosh(x) hyperbolic cosine of x
sin(x) sine of x
sinh(x) hyperbolic sine of x
tan(x) tangent of x
tanh(x) hyperbolic tangent of x

Logarithm functions Valid logarithmic operations are as follows:

Function Operation
log(x) or ln(x) natural logarithm of x
log10(x) base-10 logarithm of x
exp(x) ex

Rounding functions Valid mathematical rounding operations are as follows:

Function Operation
ceil(x) smallest integer value not less than x
floor(x) largest integer value not greater than x

Random functions Valid functions for generating random data are as follows:

Function Operation
random() random real number 0.0≤ x < 1.0
random(x) seeds the random number generator
time() elapsed time in seconds since January 1, 1970

Coordinate conversion functions Valid functions for converting to and from polar and
Cartesian coordinate systems are as follows:

Function Operation
deg(x) converts x from radians to degrees
rad(x) converts x from degrees to radians
recttopolr(x,y) magnitude of vector (x, y)
recttopola(x,y) angle of vector (x, y)
poltorectx(r,th) x-coordinate of angle th at distance r
poltorecty(r,th) y-coordinate of angle th at distance r

107

If, then, else ternary syntax A ? B : C, where A is a Boolean statement such as
(x < 2.0), B is a statement (or set of statements) to be evaluated if A is true, and C
is a statement (or set of statements) to be evaluated if A is false. Note: these
statements can only be used for return values, i.e. you cannot define local variables
inside a ternary statement.

Other utilities Miscellaneous other utility functions are as follows:

• cos_ramp(x, xstart, xend) defines a cosine ramp loading function. For
x < xstart, it returns 0.0. For x > xend, it returns 1.0. If xstart <= x <= xend,
the function has the value (1.0-cos(Pi*(x-xstart)/(xend-xstart)))/2.0. The
primary purpose for the cosine ramp is to provide smooth loading. If attempting
to run a nearly quasistatic problem with the dynamic solver, a displacement
boundary condition applied via the cos_ramp will generally give a smooth
response for a given loading time.

• cycloidal_ramp(x, xstart, xend) defines a cycloidal ramp function. For
x < xstart it returns 0.0. For x > xend, it returns 1.0. If xstart <= x <= xend,
the function has the value
(x-xstart)/(xend-xstart)-1/(2*pi)*sin(2*pi/(xend-xstart)*(x-xstart)).
The primary purpose for the cycloidal front ramp is to provide smooth loading
for prescribed displacements and velocities. This function has continuous
acceleration derivatives at xstart and xend, providing a smoother response than
the cos_ramp for prescribed displacement boundary conditions.

• haversine_pulse(x, xstart, xend) defines a haversine pulse function. For
x < xstart, it returns 0.0. For x > xend, it returns 0.0. If xstart <= x <= xend,
the function has the value pow(sin(Pi*(x-xstart)/(xend-xstart)),2). Design
shock loads for components are often specified as haversine acceleration pulses;
this function is included to make it easier to apply this loading.

Constants. There are three predefined constants that may be used in an expression.
These three constants are e, pi, and two_pi. Note that these constants are reserved
variable names and thus cannot be redefined in an expression.

Math symbol Expression Value
e e 2.7182818284...
π pi 3.1415926535...
2π two_pi 2∗3.1415926535 . . .

Also, there are two predefined constant functions that can be used,
SIERRA_CONSTANT_FUNCTION_ZERO and SIERRA_CONSTANT_FUNCTION_ONE. These two functions
are equivalent to defining functions with constant expressions “0.0” or “1.0”.

108

3.8.9.2. Input Variables for Analytic Functions
In their simplest form analytic functions have a single implicit independent input
variable.

For example,

Function myFunc
type analytic
evaluate expression = ‘‘1 + y + y^2’’

function left
type analytic
name "other_left"
evaluate expression = "1500*pow(sin(1.0e5*t*pi/9),2)"

end

For these expressions, what y or t is will depend on context. For example, when defining
material properties (section 5.4.6), it is the element centroid temperature. Typically it
would be time, such as if the function is used within a boundary condition or as part of a
user output 8.2.5.

Alternatively, one or more input independent variables can be set for the function. Many
advanced usages of analytic functions require this, for example a load that is a function of
both time and spatial position. Independent variables to the analytic function are specified
via expression variable commands.

Note that an "expression variable" line is required for each independent variable, even if the
name and meaning happen to be the same (e.g. expression variable time = time).
Also, note that analytic functions may be evaluated at each application node on the
structure (i.e. each node in a nodeset).

Some quantities are predefined by Sierra/SD as global or nodal fields for the analysis.
The list of supported input variables is given in table 3-26 and syntax 3.7.
explicit time input is currently BETA release.
Enable with the “- -beta” command-line option.

expression variable <string> = input|time|coord|disp|
↪→ velocity|acceleration|nodeId

Syntax 3.7. Expression Variable Syntax

109

Variable Description
input Function input value.

Could represent time, temperature, etc.
time Current simulation time (transient only).

(beta capability)
coord Undeformed coordinates at each node.
disp Deformation vector at each node.

velocity Velocity vector at each node.
acceleration Acceleration vector at each node.

nodeid The global node ID at each node.
Note: unmapped Exodus node id (1:N)

Table 3-26. – Predefined Analytic Input Variables.

The following is a spatial boundary condition example using multiple input variables:

Function spatialFunc
type analytic
expression variable c = coord
expression variable t = input
evaluate expression = ‘‘

cx = c[0];
cy = c[1];
cz = c[2];
t * sqrt(cx^2 + cy^2 + cz^2)’’

End

This function has two independent variables: the function input (typically analysis time)
and nodal coordinates. The nodal coordinates then have three components X, Y, and Z.
The return value of this function depends on the coordinate of each node and the input
time.

Additionally other ’nodal’ variables may be used in the "expression variable" line to define
independent analytic function variables. Typically this includes variables read from the
input mesh or variables computed via a ’user output’ command, or variables that are
output to exodus output or history files. Current testing only guarantees accuracy for
variables read from the input mesh, as they do not change with time. Output variables
change over time, and current testing does not guarantee proper evaluation order of
functions and outputs. Nonetheless, output variables are accessible through this
interface.

expression variable <string> = nodal <string>

110

For example the following function would apply a load based on a function of input
(representing time) and an input mesh nodal variables called adagio_force_x.

Function rx
type analytic
expression variable t = input
expression variable v = nodal adagio_force_x
evaluate expression ‘‘v*sin(2*pi*t)’’

End
Loads

nodeset 1 force 1 0 0 function rx
End

Finally references to other functions may also be used in the "expression variable" line to
define independent variables. There are some limitations on the types of functions that are
valid when used as an expression variable. For example, any analytic functions must not
directly use disp, velocity, or acceleration as their own expression variables (although
the same effect can still be achieved via the general nodal expression variable interface, e.g.
expression variable dispX = nodal dispX).
function expression variables is currently BETA release.
Enable with the “- -beta” command-line option.

expression variable <string> = function <string>

For example the following that uses one function to convert a displacement from meters to
millimeters and uses that result in another function to apply a displacement dependent
force.

Function dispX_in_mm
type analytic
expression variable d = disp
evaluate expression ‘‘1000*d[0]’’

End
Function fx

type analytic
expression variable t = input
expression variable dx_mm = function dispX_in_mm
evaluate expression ‘‘t^2 * disp_in_mm’’

End
Loads

nodeset 1 force 1 0 0 function fx
End

111

3.8.9.3. Limitations of Analytic Functions
Analytic functions cannot be used for acceleration boundary conditions in transient
analysis as time-integration of analytic functions is not implemented.

Analytic functions are case-insensitive. PI, Pi, pI and pi are equivalent. If it is not, then
that is a bug. Note however that if a user defines pi and Pi differently, the expression
variable parser treats them as the same, using the last definition.

This shared Sierra/SD and Sierra/SM documentation explains the two different
syntaxes. Sierra/SM “is” and “are” translates to Sierra/SD =. Although Sierra/SM
syntax treats ’=/is/are’ equivalently, Sierra/SD syntax does not recognize “is” or “are.”

Use of variables in analytic expressions that match function names, such as ’sin’, ’cos’, or
’time’ are not recommended as this can cause parsing ambiguity.

3.8.10. Plane Wave (Time Domain)

Plane wave functions are tested in acoustic scattering problems. A load on a surface is
analytically described as an incident plane wave in terms of the following parameters.

Keyword Values Description
type plane_wave identifier keyword
Direction 3 reals wave direction eeek = kkk0/|kkk0|
material string acoustic material
K0 real wavenumber, k0 = |kkk0|
origin 3 reals wave origin, xxx0

An acoustic material specifies the wave speed c0 and fluid density ρ0, and the load
specifies the pressure amplitude p0. The angular frequency ω = 2πf determines the wave
number k0 = ω/c0. The corresponding time-harmonic plane wave and velocity are

p= p0 cos [k0c0t−kkk0 · (xxx−xxx0)] vvv = eeek
p

ρ0c0
.

112

loads
sideset 1 // acoustic

acoustic_vel = 1.0
function = 65

sideset 2 // structure
pressure = 1.0
function = 65

end

function 65
type = plane_wave
Direction = 1 0 0
origin = 0 0 0
K0 = 1000
material = air

end

material air
acoustic
c0=332.0
density=1.29

end

tied data
surface 1,2

end

Input 3.5. Example Planewave Function Specification

Without the tied data block, there would be no interaction between the acoustic domain
and the structure. Instead, the boundary of the acoustic domain is rigid, and the scattered
pressure field is from a rigid boundary instead of from a structure with the specified
material properties.

3.8.11. Plane Wave (Frequency Domain)

Similarly, in the frequency domain, an applied plane wave is defined in terms of the
following parameters.

[h] The wave speed c0 and the density ρ0 are specified by the choice of material, the
frequency f is specified in the frequency block, and the particle velocity amplitude

113

Keyword Values Description
type plane_wave_freq,

iplane_wave_freq
identifier keyword

Direction 3 reals wave direction eeek = kkk0/|kkk0|
material string acoustic material
origin 3 reals wave origin, xxx0

u0 = p0/ρ0c0 is specified in the loads block. See Example input 3.7. A time-harmonic
plane wave (with the time-dependence dropped) can then be written as

p(xxx) = p0e
−ikkk0·(xxx−xxx0) . (3.2)

loads
sideset 1 // acoustic

acoustic_vel = 1.0
function = 66

sideset 1
iacoustic_vel = 1.0
function = 67

sideset 2 // structure
pressure = 1.0
function = 66

sideset 2
ipressure = 1.0
function = 67

end

Input 3.6. Example PlanewaveFreq Loads

function 66
type = plane_wave_freq
Direction = 1 0 0
origin = 0 0 0
material = air

end
function 67

type = iplane_wave_freq
Direction = 1 0 0
origin = 0 0 0
material = air

end

114

Input 3.7. Example PlanewaveFreq Specification

The syntax for the plane wave frequency function does not require a wavenumber, K0 , but
is otherwise the same as plane_wave function from the previous section. Note that both
a real and an imaginary plane wave frequency function are applied to their corresponding
real and imaginary loads—which is currently necessary in order to apply the correct phase
shift between real and imaginary parts of propagating waves—and that real and imaginary
loads should be given identical amplitude, direction, and origin.

3.8.12. Planar Step Wave

The planar step wave, keyword=“planar_step_wave” provides a means of applying a
traveling exponential step wave to an acoustic scattering problem. The function provides
both a pressure on a structure and a velocity load on an acoustic model. Parameters are
listed in Table 3-27. The exponential step wave is useful for verification problems in
scattering, but is not realizable physically. The pressure definition is similar to the plane
wave, but employs a Heaviside step function, H(t− t′), where t′ = d̂·[~x−~xo]

co
.

P = Po · e−β·(t−t
′)H(t− t′) (3.3)

A standard planar step wave function can be defined by using β = 0. This is the default
behavior if no beta parameter is specified.

Keyword Values Description
type planar_step_wave identifier keyword
Direction 3 reals wave direction ~d
material string acoustic material
origin 3 reals wave origin, ~xo
beta real exponential decay factor, β

Table 3-27. – Planar Step Wave Parameters.

3.8.13. Spherically Spreading Wave

A spherically spreading wave, keyword=spherical_wave, computes the response of a
point source excitation in an acoustic medium. The function applies both a pressure on the
structure and a velocity load on an acoustic model. Parameters are listed in Table 3-28.
Figure 3-16 illustrates the geometry.

A spherical wave is used only in transient dynamics analyses. An example input is
described in input 3.8. Function 1 in the example defines the spherical wave function,
which describes the geometry of the loading. The time history of the loading is referenced
in the function, function 11 in the example, must be a simple function of time. It could be

115

Keyword Values Description
Type spherical_wave identifier keyword
origin 3 reals wave origin, ~xo
reference_location 3 reals reference location ~R
material string acoustic material (alternate to C0)
pressure_function string new function for user supplied pressures

Table 3-28. – Spherical Wave Parameters.

Structure

Spherical Wave

Origin

Sample Location

Reference Location
x

xo

1

R

Figure 3-16. – Spherical Wave Geometry.

116

a linear function, a runtime compiled function or a table. It cannot be a function of space
and time.

LOAD 10
sideset 1001

acoustic_vel 1.0
function = 1

sideset 50000000
pressure 1.0
function = 1

END

FUNCTION 1
type = spherical_wave
origin = 0 1000 0
pressure function = 11
material = 1000 //material for acoustic medium

END

FUNCTION 11
Data 0.0 0.00000
Data 1e-6 0.00001
Data 2e-6 0.00002

END

Input 3.8. Spherical Wave Example

3.8.14. Undex Structural Acoustic Loads

For Navy scattering applications, the “multicycle_bubble” and " “Undex_shock_wave”
functions provide a numerical function for analysis of exterior shock loading. The
parameters of the loading are listed in Table 3-29. Details of the theory and
implementation are available from the Navy Surface Warfare Center, Carderock Division
(NSWC/CD). An example input is shown in input 3.9.

117

Keyword Values Default Description

type

single_decay
double_decay
hicks_bubble

Undex_shockwave

required identifier keyword

charge_weight real required in pounds of TNT
charge_location 3 reals required explosive location
waterline_depth real 0
free_surface_flag integer 1
material string required acoustic material

Table 3-29. – Undex Load Parameters. input coordinates are in inches.

function 67
type = hicks_bubble
charge_weight = 10
charge_location = 100.0 0. 50
waterline_depth = 10
free_surface_flag = 1
material = water

end

material water
acoustic
c0=4872
density=62.4

end

Input 3.9. Example Hicks Bubble Function Specification

A “free_surface_flag” of one indicates generation of an applicable image source above the
surface of the water, where a “free_surface_flag” of 0 indicates a load without a free
surface. In this routine, “z” is upwards and normal to the water surface. The depth is the
distance below the water surface, i.e.

waterline_depth = zwaterline− zcharge

where zcharge is the z component of the charge location. If the free surface flag is not
specified, no effects of the surface are included.

One special type of shock wave (contained within the general “Undex” shock wave function
definition), is that of a single decay shock wave. The single decay function has the

118

following simple analytical solution:

P (w,r, t) =
0.0 t < toa(r)

Pmax(w,r)
exp{(t−toa(r))/θ(w,r)} t > toa(r)

Where:
w = charge weight (lb. TNT)
r = standoff distance (ft)
t= time (seconds)
c= sound speed in water (ft/s)

Pmax(w,r) = k1

(
3√w
r

)a1

k1, a1 = similitude constants

θ(w,r) = k2
3√w

(
3√w
r

)a2

k2, a2 = similitude constants
toa(r) = r/c= time of arrival

3.8.15. Fluid Structure Interaction

For fluid-structure interaction (FSI) applications, the FSI keyword provides a means of
applying a prescribed nodal pressure load along the wetted surface. The FSI function is
referenced in the Sierra/SD input as follows,

Loads
sideset 1

pressure 1
scale 1
function 1

End

Function 1
type = FSI

End

The above input file assumes sideset 1 is the wetted surface. Sierra/SD will communicate
nodal locations of the sideset to the fluid. These are the locations at which pressures are
sent to Sierra/SD. Then, Sierra/SD calculates a consistent load based on the values at
the nodes. Finally, if restarts are needed, “restart=auto” is required in the solution
section.

Sierra/SD also supports two-way coupling for Fluid-Structure interaction. Interpolation
from structural nodes to fluid nodes and from fluid nodes to structural nodes is

119

implemented and unit tested. Figure 3-17 shows the infrastructure for FSI. There are many
details to use of this coupling, such coupling is turned with the “acoustic_coupling”
transient solution option.

Coupling to the Sierra code Fuego through Sierra Toolkit Transfers is currently being
implemented. Users of current sprint releases must be careful to not use the
“Fuego_coupling” transient solution option, as this is only partially implemented.

Figure 3-17. – Fluid-Structure Interaction (FSI) Infrastructure.

3.8.16. Blending

In some applications, a combination of functions is necessary to accurately describe the
loading. For example, a blended shock/bubble function is applied to a ship surface. The
shock wave reaches the surface first, and is the effective loading until the bubble function
arrives. Once the bubble arrives, the shock may be ignored, as it may not propagate
through the cavitated region. This is illustrated for the first crossing case in Figure 3-18,
and a typical input for this is shown in input 3.10. Parameters of the blended function are
shown in Table 3-30. Several examples for the more general Nth crossing case are shown in
Figure 3-19, with a typical input shown in input 3.11.

Keyword Parameter Description
Method string “first_crossing”, “second_crossing”

or “Nth_crossing”
N int (for “Nth_crossing”) number of crossings

Primary Function string shock function
Secondary Function string bubble function

Table 3-30. – Blended Function Parameters.

120

0 0.2 0.4 0.6 0.8 1

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
re

s
s
u
re

Shock

Bubble

Blended

Figure 3-18. – Illustration of first crossing blended function.

Loads
sideset 55

pressure 1
function 55

end

function 55 // blended shock/bubble
type = blended
method = first_crossing
primary function 551
secondary function 552

end

function 551
end

function 552
end

Input 3.10. Blended First Crossing Function Example

121

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
re

s
s
u

re

Applied pressure - first crossing

primary

secondary

blended

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
re

s
s
u

re

Applied pressure - second crossing

primary

secondary

blended

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
re

s
s
u

re

Applied pressure - third crossing

primary

secondary

blended

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
re

s
s
u

re

Applied pressure - fourth crossing

primary

secondary

blended

Figure 3-19. – Illustration of Nth crossing blended functions.

Loads
sideset 55

pressure 1
function 55

end

function 55 // blended shock/bubble
type = blended
method = Nth_crossing

N = 2
primary function 551
secondary function 552

end

function 551
end

function 552
end

Input 3.11. Blended Nth Crossing Function Example

122

3.8.17. Matrix-function

This section provides for input of a matrix function as is used in a cross correlation matrix
for input to a random vibration analysis. In the limit of a single input these reduce to a
single function. Note that a matrix-function can have arbitrary symmetry and can be
complex. An important feature of the matrix-function is that each entry of the matrix is a
function of frequency (or time).

The Matrix-Function is illustrated in the following example.

Matrix-Function 1
name ’cross-spectral density’
symmetry=Hermitian
dimension=2x2
nominalt=20.1
data 1,1

real function func11 scale 1.0
data 1,2

real function func12
imag function func121 scale -3.0

data 2,2
real function func22 scale 0.5

End

Matrix functions have the following parameters.

NAME allows you to optionally enter a string by which the matrix-function will be
identified in subsequent messages.

SYMMETRY identifies the matrix symmetry. Options are “none”, “full”/“symmetric”,
“asymmetric” and “Hermitian”. If the matrix is not square, only “none” can apply.
The default for this optional parameter is “symmetry=none”.

DIMENSION specifies the dimension of the matrix. If not specified, it defaults to 1×1.
The dimension is specified as the number of rows, an “x” and the number of columns.
No space should be entered between the terms.

DATA A data entry specifies one matrix-function entry. It must be immediately followed
by the matrix location row and column pair. Again, no spaces may be inserted in the
location entry. The keywords are real and imag.

• real identifies entry real component. It must be followed by a function reference
(see Section 3.8), and an optional scale factor.

• “imag” identifies the entry imaginary component. It must be followed by a
function definition, and an optional scale factor.

123

nominalt nominalt Used only for echoing the matrix values. If input_summary is
specified as an “ECHO” option (see Section 8.8) general information from the matrix
function are written to the log file (the .rslt file). If, a nominalt entry also exists, then
the matrix entries are written for that nominal time (or frequency). Only one such
output can be specified. It provides a means of checking the input to assure the
matrix values are correct at a single time (or frequency) value.

3.8.18. Alternate Table Interface

An alternate Table input is provided. See Section 3.8.19 for details about tables. However,
for many inputs, the individual specification of each function on each matrix element is
both tedious and inefficient. Table input is provided primarily for efficiency reasons. It
cannot be mixed with the individual methods, i.e. if the table keywords are used, the
“data” keyword must not be used.

Application of table input to matrix-functions requires three tables: Real valued data,
Imaginary valued data, and A table which associates each nonzero row and column of the
matrix-function with appropriate rows of the real valued and imaginary valued data. Each
has a keyword.

Real Table which is a two-dimensional table containing all the real valued entries for each
entry in the matrix. Each column contains the frequency data for that entry.

imag Table which is a two-dimensional table containing all the imaginary (complex
valued) entries for each entry in the matrix. Each column contains the frequency
data for that entry.

Table Index which is a two-dimensional table providing a map from the matrix elements
to the data columns in the real and imag tables. This index is a 4 column table.
Columns 1 and 2 are the row, column index of the matrix-function. Column 3 is the
row index of the real data, while column 4 is the row index of the imaginary data. If
the value in column 3 or 4 is zero then the corresponding data is zero See the
example in input 3.13.

The table entry has a fixed step. Each column must have the same number of values.

Matrix-Function 1
name ’spectral density’
dimension=2x2
symmetry=Hermitian
real Table real_data
imag Table imag_data
Table INDEX index_data

end

Input 3.12. Example Matrix-Function

124

Table real_data
size=3 550 // 550 freq samples, 3 matrix locations
delta=1 0.5
datafile=’real_data.txt’

end
Table imag_data

size=1 550 // 550 freq samples, 1 matrix location
delta=1 0.5
datafile=’imag_data.txt’

end
Table index_data

size=3 4
rowfirst // transpose matrix for simpler input
dataline // row col real imag

1 1 1 0 // 1st real data, no imag
1 2 2 1 // 2nd real data, 1st imag
2 2 3 0 // 3rd real data row, no imag

end

Input 3.13. Example Matrix-Function Tables

Each matrix entry in the matrix-function must reference a row of a two-dimensional table.
In the table columns contain the frequency response for that entry. The number of rows
required for each table depends on the matrix symmetry and on the index in the “Table
Index”.

3.8.19. Table

A (1 dimensional) table is implemented by including a file with one value per line.
1-dimensional tables have identical behavior to linear functions (section 3.8.2) while
typically being much faster and more memory efficient, especially for many data points.

A small section in the main input deck specifies the initial time and time increment. The
data must be sampled at a uniform interval.

Tables are used by being referenced in other sections of the input deck. Tables offer
support for multi-dimensional data (up to dimension 4). Note that tables of dimension
greater than 1 are complicated.

Each Table includes a number of required and optional parameters, as shown below.

The dimension identifies the table shape. For example, dimension=2 indicates a table of
XY values. If this parameter is not defined, the dimension will be automatically inferred

125

Table 3-31. – Table Section Options.
Parameter Default Description
dimension optional number of dimensions in the table
size required table size in each direction
datafile required ASCII file containing the values at each point
dataline required flag indicating that all data values will follow.
origin zero origin of the table (for scaling)
delta 1 interval between points in each direction
rowfirst transpose data on input

from the number of entries in size. If it is defined, it must match the inferred value, and
thus only serves as a check on the table size.

The size parameters indicate the individual table hyper-cube dimensions. For example, in
a table of dimension=2, the size parameter indicates the number of rows and columns in
the table. The total number of entries is the product of all the terms in the size.

The text file containing the table data values is specified using the datafile parameter.
Data values are separated by white space. The layout of the file is not important, but the
order is important. The first dimension cycles the fastest. For a dimension=2 table, the file
list begins with the entries for column 1. The number of entries in the file must match the
table size. Comments are not permitted in the datafile, but white space is permitted.

The dataline parameter indicates that the tabular data is included in this file following
the parameter. If dataline is specified, then datafile must not be specified. The format
is identical to the datafile. It is efficient to use dataline for smaller data sets, and
datafile for larger.

The rowfirst is provided to transpose the data on input. It applies only to 2D tables. If
this keyword is present, then the table values will be interpreted as if the table had been
transposed.

Both the origin and the delta parameters are optional values provided for interpolation.
The implicit integer entries of the table are converted to real values for function evaluation
by use of these parameters.

Function evaluations within the range of the table can be linearly interpolated. The range
in each direction is determined by the following.

origini < rangei < origini+ (deltai · sizei) (3.4)

Evaluations of the table for regions outside the valid range will use of the value of the
nearest data point, just as with linear functions.

In contrast to a function (see Section 3.8), tables require memory only as needed. All
processors store the full input deck in memory. However, tables can store a large amount of
data in the datafile. This file is opened and data is read from it only as needed. For this

126

reason, tables are preferred over functions when only a few processors may need access to a
large amount of data. Tables are the only option when a function of more than one
variable is required.

An example of a two-dimensional table definition is shown below.

Table example-2D-table
dimension=2
size = 200 300 // note: don’t put in an x
origin 1.0 0.0 // optional. defaults to 0 0
delta 1.0 0.9 // optional. defaults to 1 1
datafile ’multi_dimensional_table.txt’

END

3.9. Multipoint Constraints

Multipoint constraints (MPC) are constraint equation applied directly to the stiffness
matrix. Some analysis codes treat them as pseudo elements. An MPC is not an element,
and is inaccessible through Exodus. It is a displacement constraint,

n∑
i

ciui = r.

The (nonzero) coefficients ci are real. The number of (nonzero) coefficients is assumed to be
approximately 1. The ui are displacement of degrees of freedom. By default, r vanishes.

Unlike many Finite Element programs, Sierra/SD does not support user specification of
constraint and residual degrees of freedom (DOF). In serial solvers the partition of
constrained and retained degrees of freedom is performed simultaneously by Gauss
elimination with full pivoting so the constrained degrees of freedom are guaranteed to be
independent. For GDSW the constraints are specified as Lagrange multipliers which
involves no such partitioning. Redundant specification of constraint equations is handled
by elimination of the redundant equations and issue of a warning. User selection of
constrained DOF in NASTRAN has inconvenienced analysts who must ensure that the
constrained DOF are independent and never specified more than once.

Each MPC is specified in the input deck with a section descriptor. Note that a separate
section is required for each equation (or degree of freedom eliminated). An optional
coordinate system may be specified on the input 2; see section 3.7. The MPC will be stored
internally in the basic coordinate system (coordinate frame 0). The input consists of a
triplet listing the node or nodeset, a degree of freedom string, and the coefficient of that
degree of freedom. The degree of freedom strings are x, y, z, Rx, Ry, Rz. They are
case-insensitive. If the global ID of the node in the MPC does not exist in the model, the
code will exit with a fatal error.

2At this time, all the nodes in an MPC must be associated with the same coordinate system.

127

GDSW is required for inhomogeneous MPCs. The solution method must not be QEVP.
Sierra/SD will exit with a fatal error if a model including non-homogeneous MPCs
violates either of these requirements.

The MPC can apply some general commands that apply to the whole MPC as shown in
Table 3-32. Additionally, the MPC can include multiple lines that define the MPC
equation entries as shown in Table 3-33.

Table 3-32. – General MPC commands.

Keyword Type Description
coordinate string Optional coordinate frame for MPC

rhs real Optional right-hand side constant

Table 3-33. – MPC Equation lines.

Command Line Description
integer x|y|z|rx|ry|rz real Equation entry using single global node id
nodeset nodeset_id x|y|z|rx|ry|rz real Equation entry using nodeset

with EXACTLY one node

In this first example the MPC is defined with respect to a coordinate system dir1. The
displacement at the x degree of freedom of node 4 is constrained to be equal to the average
x degree of freedom of nodes 2 and 3 plus 5, i.e. u(4,x)−0.5∗u(2,x)−0.5∗u(3,x) = 5.0.

MPC
coordinate dir1
4 x 1.0
2 x -0.5
3 x -0.5
rhs 5.0

END

In this next example, the x degree of freedom of the node in the nodeset 101 is constrained
to be equal to the y degree of freedom of the node in the nodeset with name aft_plate.
Note that both nodesets must contain exactly one node.

MPC
nodeset 101 x 1.0
nodeset aft_plate y -1.0

END

128

In serial constraints are treated differently than in parallel. Se-
rial linear solvers eliminate the dependent degrees of freedom
before factoring. Parallel solvers use Lagrange multipliers There
is currently no user control of this approach.

Note also that there are practical differences between rigid ele-
ments (described in the following sections) and constraint equa-
tions that are nominally identical. For parallel solutions, we are
currently using an augmented Lagrange type solution method
with the rigid links. This means that terms are added to the
stiffness matrix in parallel with the constraints. In most cases,
this renders the matrices positive definite, and increases robust-
ness and solution performance with no penalty for accuracy.
Thus, rigid links are recommended whenever possible in parallel
solutions.
Replacing rigid links with stiff beams may cause ill conditioning
and simulation inaccuracies.

129

4. Solution cases

Sierra/SD supports a wide variety of different analyses or solution methods. Input
consists of an Exodus mesh file and a text input deck. Solution methods are specified in
the text input deck in the solution section.

The Solution section defines the type of physics to simulate. Analysis types are shown in
Tables 4-34, 4-35, 4-36, 4-37. Relevant options are given in the detailed description of each
solution case. Also, general options are shown in Table 3-11 and are described in Section
3.4.

Table 4-34. – Eigenvalue Solvers.
Solution Type Description
eigen Modal solution to extract natural vibration modes of

K,M
aeigen Modal solution with Anasazi
buckling Modal solution solving for buckling modes
CBR Craig-Bampton reduction for creation of superele-

ments
geometric_rigid_body_modes Exact analytic definition of the rigid body modes
blk_eigen Modal solution on a block by block basis
residual_vectors Modal truncation augmentation
largest_ev Largest eigenvalue of K,M
qevp Solution to quadratic eigenvalue problem

Table 4-35. – Modal Solution Types.
Solution Type Description
ModalFrf Frequency response using modal displacement or

modal acceleration
modalranvib Random vibration using modal superposition
modalshock Shock response spectra using
modaltransient Transient analysis using modal superposition

130

Table 4-36. – Direct Solution Types.
Solution Type Description
directfrf Direct computation of frequency response functions
NLstatics Nonlinear static solution
NLtransient Nonlinear transient solution
statics Static solution
transhock Shock response spectra using direct implicit transient
transient Linear transient solution

Table 4-37. – Preprocessing and Postprocessing Solution Types.
Solution Type Description
receive_sierra_data Import stress, displacement, and material state from

a preload Sierra/SM analysis
model_check Check input for errors, generate and output diagnos-

tics, no solve
CJdamp Approximate modal damping contributions
DDAM Dynamic design analysis method (U.S. Navy)
Preddam Gather data for use by DDAM solution case
gap_removal Do contact search and apply the contact gap removal

algorithm
superposition Expand superelement results to physical degrees of

freedom
tangent Compute tangent stiffness after a nonlinear load step
tsr_preload Import data for thermal structural response
fatigue Postprocess modal random vibration results to pre-

dict high cycle fatigue life
MPF Compute and output modal participation factors
waterline Determine waterline of a floating structure

4.1. Defining Solution Cases

It is important to distinguish the two different kinds of Solution section. A Solution section
may do one analysis. In this case a loads section is used. Or a Solution section may do
multiple analyses. Here each case may specify a load section. Here’s an example of a
Solution section that does one analysis. The eight lowest eigenvalues of a structure are
requested.

131

Solution
eigen
nmodes 8

end

A more complex analysis could perform a static preload, followed by computation of
updated tangent stiffness, and then a (linearized) eigendecomposition with this input:

Solution
case ’Nonlinear_Statics’

nlstatics
load=10

case ’tangent’
tangent

case ’eig’
eigen
nmodes 8

end

4.2. Multicase Solutions

The solution methods of Tables 4-34, 4-35, 4-36, and 4-37 may be a part of a multicase
solution. Using one input deck, it is possible to run any valid sequence of simulations. For
example, a static preload, followed by computation of updated tangent stiffness, and then a
(linearized) eigendecomposition.

In a multicase analysis, each solution step is delineated by the case keyword. The word
case indicates the beginning of a solution case. Cases are run sequentially from top to
bottom. Indenting to clarify this hierarchical relationship is recommended, but not
required. Each case keyword must always be followed by a label. The label is used to set
the output file name and is used in a variety of informational, warning, and error messages.
Note: the label name for each case must be unique.

The results and outputs from one case will be used to drive subsequent cases. For example
the modes computed by an eigen solution case will be used in a subsequent
modaltransient solution case. As another example the stresses and displacements read in
from receive_sierra_data solution case will be used to define the initial geometry and
geometric stiffness for computing eigenvalues.

In a multicase solution, the system matrices (mass, stiffness and damping) will typically be
computed once. Matrix updates between solutions may be specified by selecting the
tangent keyword (see Section 4.27).

132

4.2.1. Multicase Options

A solution type has specific options. Only transient solution cases have time steps for
example. On the other hand, Table 4-38 shows options that may apply to each solution
case. They may be specified either above the case control sections, or within the section.
The specification above the case control section is the default value. Specifications within
the case sub-blocks apply to that sub-block. In the example given in 4.2.2, the restart
options are thus “none” for most sub cases, but “read” for the eigen analysis and auto for
the linear transient.

Table 4-38. – Multicase Options.
These parameters may be specified as defaults above the case specifications, or they may be
specified for each case to which they apply.

Option Description Options
restart Restart options see Section 3.4.2
solver selection of solver see Section 3.4.3

The default load applied to each solution case in a multicase solution is prescribed by the
loads block if present in the input deck. Loading prescribed by a loads block can be
overridden by specifying a load in an individual solution case in the multicase solution.
Only one load can be applied in each solution case. In the example given in 4.2.2, load ‘10’
will be applied during the nonlinear statics solution case (case ’Nonlinear_Statics’). For
more information on loads see Section 7.3 and for load see Section 7.3.1.

4.2.2. Multicase Example

In the example which follows, a nonlinear statics computation is followed by a tangent
stiffness matrix update. An eigendecomposition of the updated matrix is computed. Two
sets of Exodus output files will be written. Output from the statics calculation will be in
files of the form ‘example-nlstatics.exo’. Eigenvalue results will be in the form
‘example-eig.exo’. The tangent solution normally produces no output in the Exodus
format.

Transient solution cases are run sequentially in time. For the example below ‘trans1’ will
start at time 0.0 and step through 100 steps of at a step size of 1e-8 and then through 4000
steps at a step size of 1e-6. The final time value of case ‘trans1’ will be
10−8102 + 10−6×4 103 = 0.004001. Case ‘trans2’ will start at 0.004001 and run an
additional 10−4×2102. This will end at time 0.024001.

133

Solution
restart=none
title=’example multicase’
case ’nlstatics’

nlstatics
load=10

case ’tangent’
tangent

case ’eig’
eigen
restart=read

case ’trans1’
transient
restart=auto
time_step 1e-8 1e-6
nsteps 100 4000
flush 50
rho=0.9
load=20

case ’trans2’
transient
restart=auto
time_step 1e-4
nsteps 200
flush 10
load=20

end

Input 4.1. Multicase Example with Trans1 and Trans2

4.3. CJdamp Solution Case

Parameter Type Default Description

Table 4-39. – CJdamp Solution Case Parameters.

The CJdamp solution provides a method to compute the equivalent modal damping terms
introduced from material damping in lightly damped viscoelastic materials.30 CJdamp is an
approximate method which assumes that the mode shapes and frequencies are not modified
by the damping. The modal damping is related to the fraction of energy in block.

134

The CJdamp method is effectively a post-processing step following an eigendecomposition
and must be run in a multicase solution. For each of the modes in the eigen analysis, a
strain energy is computed on an element basis. These are summed at the block level.

SEij =
in block j∑

elem

φTi K
elemφi (4.1)

The total strain energy TSEi is the sum of the strain energy contributions in mode i from
all blocks. We define the block strain energy ratio for mode i as,

Rij = SEij/TSE
i (4.2)

The CJdamp contribution for the modal damping of mode i, is given by,

ζi = 1
2
∑
j

Rijηj(fi) (4.3)

ηj(fi) is the CJetaFunction contribution from block j evaluated at the natural frequency
of mode i. More information is available in Section 5.4.9.

Note that cases following the CJdamp solution will include the
computed damping as part of their damping calculation.

Example,

Solution
case eig

eigen nmodes=30
case Johnson

CJdamp
case frf

ModalFrf
end

135

4.4. Craig-Bampton reduction Solution Case

Parameter Type Default Description

nmodes integer Number of fixed interface
modes

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

correction node|values|
vectors values Correction method for rigid

body modes

RbmDof string 123456
Defines which rigid body
modes to which
correction=vectors applies

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

Table 4-40. – Craig-Bampton reduction Solution Case Parameters.

It can be advantageous to reduce a model to its interface degrees of freedom. This is
important in satellite work, where the model of the satellite may be much larger than the
model of the remainder of the missile. Reduction of the satellite model to a linearized,
Craig-Bampton model makes it possible to share the dynamic properties of the model
without requiring details of the interior. There are many types of component mode
synthesis techniques (or CMS), of which the Craig-Bampton approach is one of the more
popular. In this approach the model is reduced to a combination of fixed interface and
constraint modes. The fixed interface modes are eigenvectors of the system with all
interface degrees of freedom clamped. A constraint mode is the deformation that results if
one interface degree of freedom receives a unit displacement, and all other interface degrees
of freedom are zero. There is one constraint mode per interface degree of freedom.

The Craig-Bampton reduction solution reduces an entire structural model to its
reduced system and transfer matrices. Options are listed in the table below, and
correspond to the parameters required for an eigendecomposition (Section 4.9). In
addition, a CBModel section must be defined elsewhere (see Section 4.4.1). Any
boundary conditions specified are applied before reducing the model.

We note that sensitivity analysis can be performed in Craig-Bampton reduction,
though the process is somewhat different from other types of sensitivity analysis. Section
4.4.1 contains more information about sensitivity analysis in Craig-Bampton models.

136

The method will write system matrices and general information. Each of the parameters is
described below.

nmodes: The CB model is composed of fixed interface modes and constraint modes. The
number of constraint modes is determined by the interface. nmodes selects the
number of fixed interface modes. The fixed interface modes are eigenvectors of the
interior of the structure, and provide a basis for internal deformation. Any number of
these modes may be specified. Typically, frequencies up to about twice the system
frequency are required for accuracy.

correction: As shown in the theory manual, the null space of the stiffness matrix is
determined by the sum of two large terms: κcc =Kcc+Kcvψ. With parallel iterative
solvers, it may be difficult to determine this quantity as accurately as desired. In
particular, it is possible for errors in the solver to render the reduced matrices
negative definite, which can cause instability in subsequent transient analysis. It is
strongly recommended that low solution tolerances be used in developing CB models.
In addition, the matrix may be post-processed to correct these errors. The
post-processing options are as follows:

none no correction will be applied.

values (default) no corrections will be made to the eigenvector space, but the
negative eigenvalues will be adjusted to zero.

vectors This option is available in models that have no boundary conditions, so that
the CBR model is floating and has six rigid body modes. If boundary conditions
are present, there is a fatal error. Additionally, if the model does not have six
rigid body modes for another reason (for example a gap contact constraint that
impedes rotation) then the correction=vectors option is not well posed, should
not be used, and could cause a serious degradation of model behavior. The
correction=vectors will compute Zero energy eigenvectors geometrically
(exactly), and these are used to correct both the eigenvalues and the
eigenvectors. This is more involved than correcting the eigenvalues alone, but it
is not a significant computational cost, and can improve the usefulness of the
resulting model.

If correction=vectors is selected, one may also optionally determine which
zero energy modes are required. This word RbmDof activates this. It is followed
by a string indicating which dofs are active on the interface. The string contains
the numbers 1 through 6, where 1 represents translation in the x coordinate
direction. These specifications apply in the basic coordinate frame.

solution
CBR

nmodes=20 shift=-4e6
correction=vectors
RbmDof=’123’

end

137

Inertia Tensor for Craig-Bampton Reduction. A reduced inertia matrix, IIIvv may be
output from a CBR (Craig-Bampton Reduction) analysis. The Inertia Tensor may be used
to apply initial conditions to the superelement in some applications. The input deck syntax
is described in the CBModel section, 4.4.1. ΦΦΦ is the matrix of mode shapes used for the
CBR analysis. It consists of both fixed-interface modes and constraint modes. IIIvv is
defined by

IIIvv = ΦΦΦTRRR,

The number of rows in IIIvv is the number of CBR modes, and the number of columns is the
number of rigid body vectors. For example, for the three translational rigid-body modes
and assuming three degrees-of-freedom per finite element node,

RRR =

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
...

.

Mass Inertia Matrix for Craig-Bampton Reduction. The Mass Inertia Matrix is
used in some applications to apply a load to the interior degrees of freedom of a model. 3

The mass inertia matrix is defined as,

Im = ΦΦΦTMRRR.

where M is the mass matrix of the unreduced model.

Note the following limitations for the CBR method.

• MPCs may no share nodes with interface nodes.

• The entire reduced order model and associated transfer matrix
must fit into memory. On a parallel machine, this memory is
required on every processor. The dimension of the model is the
sum of the numbers of constraint and fixed interface modes.

• Static solutions with all interface degrees of freedom clamped are
part of the reduction process. If the interface dofs do not fully con-
strain the system, then the linear system may be singular. In such
cases the solution is not reliable. Due diligence includes verifying
the reduced order eigendecomposition against the full system. One
may also compare the retained mass.

3Neither the inertia tensor, nor the mass inertia matrix may be applied in Sierra/SD. They are output
quantities.

138

4.4.1. CBModel

The CBModel section provides a method of specifying information related to a
Craig-Bampton model reduction of the entire structure. It is required by the CBR method
described in Section 4.4.

The “interface” is that portion of the model which will interface to the external structure.
The interface is defined by collections of nodes specified as nodesets or sidesets. After
eliminating boundary conditions, the active degrees of freedom on the nodes become the
interface.

Table 4-41. – CBModel Parameters.
Keyword type Description
nodeset int/string/list Exodus nodeset name(s) and/or id(s).
sideset int/string/list Exodus sideset name(s) and/or id(s).
format string specifies the output format.

MATLAB - MATLAB.m format
DMIG - NASTRAN DMIG format
DMIG* - NASTRAN long DMIG format
netcdf - netcdf format†

file string specifies the file name for output.
GlobalSolution bool ‘yes’ to compute the eigenvalues of the

reduced system.
inertia_matrix bool ‘yes’ to compute the inertia tensor

sensitivity_method string specifies the method to
compute CBR sensitivities.
constant_vector - constant vector method
finite_difference - finite difference method

spoint_offset integer offset for spoints in DMIG format
†The netcdf format is the database upon which exodusII is built. SEACAS tools, MATLAB and
Python can all read netcdf files.

The input deck keywords shown in Table 4-41 are described below.

nodeset: The nodeset keyword specifies the nodes to be placed in the interface. Nodesets
are defined in the Exodus file. A nodeset ID or name must follow the nodeset
keyword. Alternatively, a list of nodesets (in MATLAB type format) can be
specified. This is identical to the history file definition of Section 8.4, and follows
the rules for integer lists detailed in Section 3.1.

sideset: A sideset may also be used to specify the interface nodes. Any number of nodeset
and sideset combinations are allowed. The interface is the union of all such entries.

139

format: The preferred format is the netcdf , format. This is a superset of the Exodus
format. It is the format that must be used if the reduced model is to be inserted into
another Sierra/SD model as a superelement. The DMIG format is for use with
NASTRAN. It contains only the reduced system matrices (no maps, coordinates,
etc). The MATLAB format is a convenience.

file: The file keyword is required to specify the output file name.

GlobalSolution: As a convenience, we will optionally compute the eigenvalues of the
reduced system. It is strongly recommended that these values be compared with the
eigenvalues of the full system to ensure that the model has converged over the
frequency of interest. Moreover, users are strongly advised to review section
Craig-Bampton Model Reduction of Sierra/SD How To41 before computing
superelements.

inertia_matrix: The inertia matrix defined in Section 4.4 is optionally computed and
written to the super-element files with i the reduced mass and stiffness matrices.

sensitivity_method Currently, the constant vector and finite difference methods are
available for computing sensitivities for Craig-Bampton reduction. The default is the
constant vector method.

spoint_offset NASTRAN DMIG output defines “spoint” variables that store generalized
degrees of freedom. The identifiers the generalized output variables must be unique.
The range of identifier output may be specified with this option. By default,
“spoint_offset” is 10000 which means spoints are numbered as 10001, 10002, 10003,
etc.

Specify “displacement” in the outputs section (8) to output the constraint modes and
fixed interface modes that were used as a basis to generate the reduced order system to the
Exodus file. First the fixed interface modes are output, followed by the constraint modes.
The eigenvalues of the fixed interface modes correspond to the mode shapes. For the
constraint modes an integer index replaces the eigenvalues. These modes may be visualized
and evaluated using any of the standard tools.

Data in Table 4-42 will be written to a file. The Output Transfer Matrix (or OTM)
depends on data in the history section (see Section 8.4). Specifically, the output nodes
and elements, and the output variables are specified in the history file as if they were to be
output to a history file. For simplicity, and because the OTM describes a linear transfer
matrix, only a limited subset of results are provided. In particular, displacements and the
natural strains and stresses may be written. We think of the OTM as having 6 parts.

T =

Φu Ψu

Φε Ψε

Φσ Ψσ

 ,
uε
σ

= T

[
q
uΓ

]
. (4.4)

The amplitude q of the internal constraint modes is typically computed in the next level
analysis. Also, uΓ is the vector of interface displacements. The fixed interface modes

140

Table 4-42. – Data output for Craig-Bampton Reduction.

Variable Description
NumC number of constraint modes
NumEig number of fixed interface modes

Kr Reduced stiffness matrix.
Mr Reduced mass matrix.
Cr Reduced damping matrix. Only available for dashpots

and block proportional damping.
cbmap A two column list providing a map from each interface

degrees of freedom to the node and coordinate direction
of the global model.
The first column of this list is the node number (1:N) in
the structure. The second column indicates the coordi-
nate direction as follows.

Number Description
1 x
2 y
3 z
4 Rotation x
5 Rotation y
6 Rotation z
7 acoustic pressure

The “cbmap” has the same number of rows as Kr or Mr.
OutMap A map of the nodes in the output transfer matrix.

OutMap(i) is the global node number for each node in
the output. There are always 6 rows of output for each
node. Thus, OutMap(1) corresponds to rows 1 through
6 in the OTM.

OTM Output Transfer Matrix to provide a transfer function
from the interface dofs to internal degrees of freedom or
other results.

OutElemMap A map of the elements in the output transfer matrix,
OTME. OutElemMap(i) is the global element number
for each element in the output. There are always 6 rows
of output for each element.

OTME Output Transfer Matrix to provide a transfer function
from the interface dofs to internal elements.

141

(eigenvalues of a clamped boundary) are represented by Φ, and the constraint modes by
Ψ.

The left-hand side vectors represents internal results (displacement, strain and stress)
which are computed from the interface results. Any of the output results may be omitted,
and the OTM will retain only nonzero components. For example, if only displacements are
required, the matrix reduces to [Φu Ψu]. The OTM matrix is a rectangular matrix, and it
is typically full. An example CBModel section follows.

CBMODEL
nodeset=1:2 // nodes from nodeset 1 and 2
format=netcdf // use a netcdf format file
file=’junk.ncf’

END

The reduced inertia matrix III for Craig-Bampton Reduction defined in Section 4.4 may be
computed and written to the super-element files with the reduced mass and stiffness
matrices. III can be written to the results file in either netcdf, MATLAB or DMIG format.
In the CBModel section

CBMODEL
nodeset 1
format = netcdf
file = model.ncf
GlobalSolution = yes
inertia_matrix = yes

END

The inertia_matrix = yes-no line requests the output of the inertia tensor. The default
value of inertia_tensor is no.

NOTE:
The OTM output capability permits an analyst to output the reduced order
model of the entire structure for use in another code that supports superele-
ments (such as MSC/NASTRAN). In a subsequent release, we will add the
capability to input these matrices as a superelement in Sierra/SD. At that
point one could perform a Craig-Bampton reduction to generate a reduced or-
der model of that portion of the structure. A follow-up analysis could use this
as a superelement. See details in Figure 4-20.

142

Complex mesh

Component

K, M, OTM

superelement

matrices

Initial Analysis

Analysis 2a Analysis 2b K, M, OTM

superelement
matrices

Figure 4-20. – An initial analysis using CBR can be applied to reduce a complex component
to much smaller matrices. In subsequent analyses the superelement replaces the complex
component in the system analysis. There is little loss of accuracy, but significant computational
benefit.

143

4.4.2. Sensitivity Analysis

Sensitivity output for Craig-Bampton reduction requires both the sensitivity block of
Section 3.6, and the sensitivity_method keyword in the CBModel block. The default
sensitivity_method is constant vector.

The output differs from that typically seen in eigenvalue or transient solutions. In the case
of a Craig-Bampton reduction, the sensitivities that are output consist of partial
derivatives of the reduced mass and stiffness matrices with respect to the parameters. We
give a brief description here, and refer to the CBR Sensitivity Analysis discussion in the
section Solution Procedures of the Theory Manual for further details.

The reduced stiffness matrix κ= T TKT is computed from the Craig-Bampton
transformation matrix, T and the stiffness matrix, K. The similar expression determines
the reduced mass matrix.

Sensitivities of κ with respect to a parameter p can be computed with the constant vector
and finite difference approaches.

The sensitivity_method approach to the sensitivity of κ with respect to a parameter p
ignores the dependence of the transformation matrix T = To on p.

dκ

dp
≈ T To (K(p+ ∆p)−K(p))To

∆p

The finite_difference method uses forward differences. Given updated system stiffness
K1 =K(p+ ∆p) and transformation matrix T1 = T (p+ ∆p), direct forward differences are
used to evaluate the sensitivity

dκ

dp
≈ T T1 K(p+ ∆p)T1−T To K(p)To

∆p (4.5)

As long as the system has no repeated modes, this approximation converges to the
sensitivity as ∆p goes to zero. If there are repeated modes in the transformation matrix T ,
then the perturbed transformation matrix T1 will re-order the repeated modes contributing
to To. This corrupt the difference operation in equation 4.5.

As the constant vector method uses To only, for systems with repeated modes the constant
vector method is recommended.

Sensitivity analysis of a Craig-Bampton model has different output from other types of
sensitivity analysis. Depending on the format parameter (see Table 4-41), it is written in
either MATLAB or netcdf format. The default is netcdf.

The outputted quantities are the derivatives of the stiffness and mass matrices with respect
to the various parameters. Thus, if there were two sensitivity parameters p1 and p2, the
output quantities would be

∂κ

∂p1
,
∂κ

∂p2
(4.6)

144

where κ would be the reduced mass and/or stiffness matrix. The dimensions of these
sensitivity matrices would be the same as the dimensions of the corresponding reduced
mass and stiffness matrices.

The output matrix derivatives given in equation 4.6 are useful for studying how the
reduced matrices change with the parameters. These matrix derivatives can also be used in
subsequent analysis with the corresponding superelements. For more details, we refer to
Section 6.31.

4.5. preddam Solution Case

Parameter Type Default Description

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

load string none Load section for
gravitational loading

Table 4-43. – preddam Solution Case Parameters.

The Preddam solution case is intended to be ran as part of a multicase solution, as a
preparatory step for a subsequent DDAM analysis (section 4.6). It should be preceded by an
eigen solution case (section 4.9), but does not necessarily have to be followed by a DDAM
solution case.

Preddam utilizes the eigenvectors and system mass matrix produced in the preceding eigen
solution to calculate and filter the modal participation factors, modal weights, individual
modal weight percentage, cumulative modal weight, and cumulative modal weight
percentage. See table 4-43 for a list of valid Preddam section parameters.

modalfilter is implemented as a part of Sierra/SD and may be used as a part of other
solution methods. It provides a means of filtering data taken from the modal analysis and
the participation factors. More information may be found in section 4.9.2.2
and section 4.14.

A load block is required. It applies to the value of gravitational loading (−386.4). The
direction must match DDAM analysis direction defined in the modalfilter block and in
the subsequent DDAM solution case.

145

4.5.1. Eigen analysis notes

The standard Sierra/SD specification for eigenvalues is nmodes=<number>, where
<number> is an integer value for the requested number of modes (see section 4.9). This
capability can compute approximately half the modes of the system at most. For
verification purposes a limited capability exists to compute all the eigenvalues. This
capability runs only in serial, and only on small models. It is selected by nmodes=all.

Sierra/SD does not have the capability to select modes by frequency limits. The user
must choose the number of modes, nmodes, in an initial eigen solution, and continually
increase nmodes and restart or rerun modal solution until the desired frequency level is
reached. This step is recommended to be completed before the subsequent Preddam and
DDAM solution cases are included and analysed.

4.6. DDAM Solution Case

Parameter Type Default Description

analysis_
direction

vertical|
athwartship|
fore_aft

vertical → Z-direction
athwartship →
Y-direction
fore_and_aft →
X-direction

ship_type surface_ship|
submarine

See NAVSEA
documentation

mount_type hull|deck|
shell_plating

See NAVSEA
documentation

response_type elasticplastic|
elastic

See NAVSEA
documentation

velocity_coeffs <real>(4) See NAVSEA
documentation

acceleration_
coeffs

<real>(4/5) See NAVSEA
documentation

Table 4-44. – DDAM Solution Case Parameters.

The U.S. Navy Dynamic Design Analysis Method (DDAM) is an established procedure
employed in the design of ship equipment and foundations for shock loading requirements.
The details of the formulation, specific procedures for application, acceptance criteria, etc.,
are documented in NAVSEA Report 250-423-30 and NAVSEA 0908-LP-000-3010. Support
for performing DDAM calculations, as implemented in the Sierra/SD Finite Element

146

Code, is documented both in the Sierra/SD User’s manual and in the DDAM Primer.
The user is expected to be fully familiar with both NAVSEA publications.

DDAM is focused on five main phases: problem formulation, mathematical modeling,
coefficient computation, dynamic computation, and evaluation. DDAM as implemented in
Sierra/SD focuses on the evaluation phase.

A DDAM analysis in Sierra/SD is divided into three solution cases: case 1 (eigen), case 2
(Preddam), and case 3 (DDAM). Case DDAM may only be run following Preddam and eigen.

DDAM uses filtered eigenvalues and mode shapes from case 1 eigen and filtered modal
participation factors and modal weights from case 2 Preddam to calculate shock design
coefficients and values, filtered modal outputs (force, displacement, stress, etc.), and the
NRL sums of those outputs.

Nodal displacements, velocities, accelerations, and forces; element-wise stresses and derived
quantities; and NRL sums of the above are all written to the output Exodus file using the
ddamout output keyword (see section 8.1.54). Some commonly used post-processing tools
for Exodus outputs are Paraview for graphical visualization and explore, blot, and
exo2mat for data extraction.

An example input follows.

SOLUTION
case modal

eigen
nmodes = 4

case filter
preddam

modalfilter VERTICAL
load 1

case
DDAM

analysis_direction VERTICAL
ship_type SURFACE_SHIP
mount_type HULL
response_type
velocity_coeffs 1.4 5.2 220.1 12.2
acceleration_coeffs 1.0 2.0 3.0 4.0 5.0

END

147

MODALFILTER vertical
remove 1:500 // x y z Rx Ry Rz
cumulative mef 0.0 0.0 1.0 0.0 0.0 0.0 //VERTICAL

END
LOAD 1

body
gravity

0.0 0.0 1.0
scale -386.4

END
OUTPUTS

ddamout
END

Note: Ship directions (analysis_direction) must match coordinate directions. See
table 4-44 for the meaning of each value. The direction must also match the modalfilter
and load sections used in the Preddam solution case.

DDAM has 6 main capabilities in Sierra/SD.

1. Include modal masses that include at least 1% individually of the total modal mass.
To add extra modes, in the modalfilter block use add.

2. Incorporate a 6g minimum load requirement. This is not a user option.

3. Complex models and multiple element types.

4. Superelement integration.

5. Symmetric boundary conditions.

6. Parallel computation.

The user may verify Preddam (section 4.5) and DDAM by examining filtered modes,
participation factors, modal weights, shock design coefficients, and values found in the
following text files:

1. Preddam → PREDDAM_RESULTS.txt

2. DDAM → DDAM_RESULTS.txt

DDAM does have a few limitations. The equipment to be analysed must be represented as
a linear elastic system with discrete modes. Damping is neglected. For very low frequency
(VLF) systems, DDAM may not be appropriate, and, where closely-spaced modes exist,
DDAM may produce excessive responses.

148

4.7. DirectFRF Solution Case

Parameter Type Default Description

interpolate
points integer 0

Number of additional
points to interpolate for
Padé expansion. If zero, no
interpolation is performed.

interpolate
order

integer 20
Order of the rational
function for Padé
expansion.

flush integer 50

Defines how often results
are written to the exodus
results file. See
Section 3.4.1

Table 4-45. – DirectFRF Solution Case Parameters.

Option directfrf is used to perform a direct frequency response analysis. In other words,
we compute a solution to the Fourier transform of the equations of motion, i.e.,K+ iωC−ω2M︸ ︷︷ ︸

≡A(ω)

u= f(ω) (4.7)

where u is the Fourier transform of the response u, and f is the Fourier transform of the
applied force. The matrix equation is then solved for each frequency. When a direct solver
is used, this means that a complex factorization must be performed once per output. This
is time-consuming, and the ModalFrf may be a better option for many situations (see
Section 4.16).

The force function must be explicitly specified in the load section, and must have a
function definition. Note that the force input provides the real part of the force at a given
frequency, i.e., it is a function of frequency, not of time.

The frequency response function is evaluated at the frequencies specified as described in
Section 8.5. In a frequency section set freq_step, freq_min, and freq_max. Also, set an
application region. Examples are presented in inputs 4.7, 4.8 and 4.12.

In addition to the output that is sent to the frq file, output may also be written to the
Exodus file, provided that the keywords (such as acceleration) are specified in the
outputs section. If nothing is specified in the outputs section, then nothing is written to
the Exodus output files.

149

The expression “frf” is often interpreted as the ratio of output/input.
There are reasons for using that ratio, including the confusion that
can come from scaling the Fourier transform. The Sierra/SD code
computes the output and does not compute a ratio. If the ratio is
required, use a function with unit load as the input.

4.7.1. Padé Expansion

Computation of each frequency response is expensive because the system matrices must be
computed, factored and solved once at each frequency. A cost-effective approach is to use a
much coarser computational grid for full computation, and use a rational function (or
Padé) expansion for intermediate points. 4 The two additional parameters required for the
expansion are listed in table 4-45. They are described below, and an example is shown in
input 4.2. The theory is described in reference.6

solution
case out

directfrf
Interpolate Points = 50
Interpolate Order = 18

end

Input 4.2. Padé Expansion Input Example. In this example, each exactly
computed direct frequency response point will be separated by 50 interpolated
values. These values will be determined using a Padé expansion of order 18.

4.8. Model_Check Solution Case

Parameter Type Default Description

Table 4-46. – Model_Check Solution Case Parameters.

The keyword model_check will cause Sierra/SD to form matrices. No solve will be done.
The main reason to use this solution case is to output diagnostics to help debug model
setup. Outputs available include mass properties, matrix diagonals, metrics around

4A rational function expansion is similar to a Taylor series expansion, but is capable of approximating
resonant behavior.

150

element shape, constraint diagnostics, etc. Additionally this case can be used to write out
MATLAB format matrices with the ’mfile’ option for custom debugging or post
processing.

4.9. Eigen Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

fluidloading yes/no no
Turns on added mass for
approximate Wet Modes
calculation.

Table 4-47. – Eigen Solution Case Parameters.

The eigen solution case computes eigenvalues and mode shapes of a system representing
the natural vibration modes. The parameters NegEigen, eig_tol, and eigen_norm are
described in sections 3.3 and 3.3

Eigenvectors, Φ, are stored in Exodus files as time dependent displacements. The time of
an eigenvector is the frequency. SEACAS library tools expect times to be unique,
occasionally causing benign warning messages when there are multiple modes at the same
frequency. The mode shapes multiplied by the consistent mass matrix 8.1.10 are also
available.

4.9.1. Option nmodes

Nmodes is the number of modes to compute. The eigenvalues are computed beginning with
the lowest frequency mode and working up. The calculation continues until nmodes have
converged. Modal analysis uses iterative Lanczos procedures. These methods build a

151

Krylov subspace from which the solution is determined. The Krylov subspace method is
designed to find the lowest frequencies, which is typically what is needed for structural
analysis. More linear solves and longer run times are required to compute more modes and
reach higher frequencies.

If nmodes=all, then all the finite modes of the structure are computed using dense linear
algebra. No shift is required. The mass matrix may be either full rank or singular.
Constraints may be present. This option is only available in serial. The number of dofs
must be < 1000.

4.9.2. Solving Singular Systems with Shifts

There is a trade off between reducing the number of linear solves required to solve an
eigenvalue problem or reducing the cost per linear solve. This trade off is controlled using
the shift. The number of solves per eigenvalue decreases as the shift decreases in
magnitude, and at the same time the cost per linear solve increases. Direct linear solvers
require a shift for singular (floating) systems. Iterative methods are more reliable when
applied to positive definite linear systems than they are when applied to positive
semi-definite linear systems, The eigenvalue problem is defined as,

(K−ω2M)φ= 0. (4.8)

K and M are positive semi-definite matrices. If the shift σ < 0, then K−σM is positive
definite. Solution cases generally involve positive definite matrices except direct frequency
response.

Here K and M are the stiffness and mass matrices respectively, and ω and φ are the
eigenvalues and vectors to be determined. The problem may be solved using a variety of
methods — the Lanczos algorithm is used in Sierra/SD. In this method, a Krylov
subspace is built by repeated solving equations of the form Ku= b. For floating structures,
or structures with zero-energy mechanisms, K is singular and special approaches are
required to solve the system. The two approaches used in Sierra/SD are described
below.

Deflation. If it is possible to identify the singularity in K, then the null vectors of K are
eigenvectors (with ω = 0), and the system can be solved by ensuring that no
component of the null vectors ever occurs in b. This approach is equivalent to
computing the pseudo inverse of K.

The geometric rigid body modes capability 4.32 can be used to analytically compute
the standard rigid body modes and deflate them out of a singular system. This is
particularly helpful for post-processing that expects the standard representations of
the rigid body modes.

152

Shifting. The second method involves solution of the shifted problem,

((K−σM)−µM)φ= 0. (4.9)

This system has the same eigenvectors, φ, as the original equation, and its
eigenvalues, µ, are related to the originals by µ= ω2−σ.

On serial platforms, a small negative shift is normally sufficient to solve the problem due to
the high accuracy of serial direct solvers. For parallel solution, a reasonable shift value is
usually given by σ =−ω2

elas, where ωelas is the expected first nonzero (or elastic)
eigenvalue. Because Sierra/SD cannot compute an optimal shift value a priori, a default
of −1 is used and a warning is written if the shift used is well outside of the expected
range. In practice, a shift of −1e6 is often used in Sierra/SD input, as this gives
reasonable results for extracting frequencies anywhere near 150Hz, assuming the time unit
is seconds. This is often the general frequency range of engineering interest. However, an
adequate shift may vary some depending on the units and the properties of an analysis.

The shifted problem benefits from the fact that K−σM can be made non-singular (except
in rare situations). This is done by choosing σ to be a large negative value. Unfortunately,
the Lanczos routine convergence is affected if σ is chosen to be too far from the
recommended value of σ =−ω2

elas.

If σ is too large, many solves will be required to determine the eigenvalues, which
consequently slows convergence. If σ is too small each linear solve may be near singular,
requiring many solver iterations or being unable to reach the target residual at all resulting
in a ’SOLVER OUT OF BOUNDS’ error.

Another consequence of an excessively large or small negative shift is that potentially not
all redundant zero eigenvalues may be found. These modes may be found by correcting the
shift, tightening tolerances, or by restarting.

The shifted eigenvalue problem is more reliable. Set the grbm_tol to a small value (e.g.
1e-20)(or use the default), and manually enter a negative shift. The output should still be
examined to ensure that no global rigid body modes are detected.

If the model is not floating and has no mechanisms and no zero energy modes, the system
is not singular and a shift is unnecessary.

Example

A representative Solution section for an eigendecomposition with a shift of −106

following. A dozen modes are requested. This shift would be appropriate for a system
where the first elastic mode is approximately 150Hz.

Solution
eigen
nmodes 12
shift -1.0e6

153

end

4.9.2.1. UntilFreq Option and Modal Restart
The untilfreq keyword provides an additional method of controlling the eigenvalues to be
computed. If this value is provided, then the analysis will be automatically (and internally)
restarted until the frequency of the highest mode is at least the value of the untilfreq.
This restart capability is somewhat crude. There are always nmodes new modes
computed on each calculation. Also, because there can be inaccuracies associated with
restarting the eigendecomposition. Sierra/SD restarts a maximum of 5 times.

Sierra/SD uses the ARPACK Lanczos solver for the eigen problem. This solver
maintains the orthogonality of the eigenvectors for a single batch of modes. However, when
restarted, the solver must deflate out the previously computed modes. There can thus be a
slight loss of orthogonality due to round off. With repeated restarts, the effect can
significantly reduce accuracy.

Additionally, modal restart can be manually controlled via the multicase solution. In the
example below, the first 1000 modes are computed in ’eig1’. Next, eig2 restarts and reads
and deflates those 1000 modes from the system. In this solution case, an additional 500
modes are computed, for a total of 1500 modes. Restarting a modal analysis in this way
can compute modes with less memory than computing all modes at once. An excessive
number restarts of this nature (more than about five) will lead to accuracy loss from round
off errors during deflation.

Solution
case ’eig1’

eigen
nmodes 1000

case ’eig2’
eigen
restart = read
nmodes 1500

end

4.9.2.2. ModalFilter Option
The optional modalfilter keyword provides a means of reducing the modes retained for
output and for subsequent analysis. For more details, see Section 4.14.

Use of this parameter within the eigen solution case is deprecated in favor of the new
modalfiltercase solution case (Section 4.14).

You can also put the modal filter into a separate case, called Preddam 4.6.

154

4.9.2.3. Fluid loading Option
Although a coupled structural/acoustic eigenvalue problem is quadratic, under certain
approximations, the fluid may be represented as an added mass on the structure, and a real
eigenvalue problem results as described in subsection Wet Modes or Added Mass section
Solution Procedures of the Theory Manual. The fluidloading enables that added mass
calculation. For wet modes all material blocks that use an acoustic material are treated
alike as a fluid domain for mass loading.

In an early implementation the lowest modes of the acoustic stiffness matrix were used to
approximate the added mass. As a sanity check, one mode of the acoustic stiffness matrix
is approximated.

A fatal error is returned if infinite elements are detected. Fluid loading is not applicable to
models that use infinite elements for two reasons. Infinite elements lead to a nonsymmetric
eigenvalue problem that is less well-supported than other modal analyses. Second, the fluid
region stiffness matrix is singular, implying an infinite added mass.

4.9.2.4. Rigid Body or Zero Energy Modes
Rigid body modes represent rigid body translation or rotation of a structure. A normal
free-free structure would be expected to have 6 rigid body modes. A structure with
constraints may have fewer than 6 rigid body modes. On the other hand a structure with
multiple disconnected pieces may have more than 6 rigid body modes. To compute any
rigid body modes, one must request all of them. For structures with 6 rigid body modes,
nmodes ≥ 6. Otherwise, the solution case is likely to fail. Prior to computing the wet
modes, a Geometric Rigid Body Modes solution case 4.32 is added and the parameter
num_rigid_modes is set to 6.

155

4.10. AEigen Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

im-
plicit_restarts integer 5

Number of allowed restart
steps, default same as
eigen

anblocksize integer 1
Number of subspace vectors
added each step, default
same as eigen

anrho_shift Real 0.0 Shift of infinite eigenvalues
of constrained problem

anverbosity integer 17 Level of verbosity of log
files, see below for details

subspace_size integer

Maximum number of
subspace block
Krylov-Schur basis vectors.
By default, picks based on
number of requested
eigenvalues.

Table 4-48. – AEigen Solution Case Parameters.

The AEigen modal solution uses the more recent Krylov-Schur method in the Anasazi7
package. Note that the eigenvalue methods of Section 4.9 use the closely related ARPACK32

package. Modal solution methods all control accuracy using the parameter eig_tol. Shifts
are used as discussed in Section 4.9.2.

Anasazi has support for GPU architectures. It also supports block linear solvers, although
no true block linear solvers are available.

156

The amount of diagnostic information or level of verbosity is changed used anverbosity .
The default value is 17, implying that the Anasazi solvers will output errors, warnings, and
timing details. Each verbosity type is controlled by a single bit in the integer anverbosity.
These types are listed in Table 4-49. Each combination is valid, the combinations being
formed by adding different verbosity values. For example, setting anverbosity to
25 = 0 + 1 + 8 + 16 requests output for Errors, Warnings, Final Summary and Timing
Details.

Verbosity type Value
Errors 0
Warnings 1
Iteration Details 2
Orthogonalization Details 4
Final Summary 8
Timing Details 16
Status Test Details 32
Debug 64

Table 4-49. – AEigen Verbosity Table.

Example Input 4.3 shows how to select the Krylov-Schur method. A dozen of the lowest
frequency modes are requested. The shift is −106. The shift is appropriate for a floating
system where the first elastic mode is approximately 150Hz. This produces eigenvalues
equivalent to the example given in 4.9 for eigen. The verbosity level specifies that after
computing the eigenvalues, the solver will print status information (number of iterations,
current eigenvalues) and timing statistics.

Solution
aeigen

nmodes 12
shift -1.0e6
anblocksize 1
anverbosity 25

end

Input 4.3. Aeigen example

4.11. Largest_Ev Solution Case

Parameter Type Default Description

Table 4-50. – Largest_Ev Solution Case Parameters.

157

The Largest_Ev analysis determines the largest eigenvalue of the system, i.e.

(K−λM)φ= 0

There are no arguments to the solution method. The eigenvalue not physically meaningful.
This solution is used primarily for debugging.

4.12. Fatigue Solution Case

Parameter Type Default Description

method † narrow-
band

Fatigue calculation
algorithm to use.

duration <real> 1
Time duration, τ over
which to integrate fatigue
damage.

Table 4-51. – Fatigue Solution Case Parameters.

† The available fatigue algorithms are narrowband and Wirsching.

High Cycle Fatigue occurs after long periods of alternating stresses in the elastic range.
The input parameters for fatigue-failure are shown in Tables 4-51 and 5-88. An example is
shown in input 4.4. Fatigue analysis requires inputs in several sections.

1. The fatigue section in the Solution block must be immediately preceded by a
modalranvib solution, with noSVD option (4.17). This defines the random stress
moments needed for computation of the stress crossing rates.

2. The Fatigue section in the Solution block defines general fatigue parameters.
Relevant parameters are outlined in Table 4-51.

3. The material section must include parameters necessary for computation of fatigue
and damage. Sections without this input will not have a fatigue parameter output.
Typical materials parameters required for fatigue analysis are found in Table 5-88,
found in the materials section, 5.4.2.

158

Solution
title ‘High cycle fatigue example’
case modes

eigen
nmodes 10

case vrms
modalranvib
noSVD
lfcutoff 10

case failure
fatigue
duration = 1.0
method = Wirsching

end
Block 100

material aisi4140
end
Block 200

material steel
end
Material aisi4140

E = 10e6
density = 0.00075
Fatigue_A1 = 31.5805
Fatigue_A2 = -14.0845
Fatigue_Stress_Scale = 0.001 // Psi to Ksi
MaterialType = PeakStress // or StressRange

end
Material steel

E = 30E6
nu = 0.28
density = 0.007

end

Input 4.4. High Cycle Fatigue Input Example. Fatigue is specified by block. In
this example, there are two blocks. The material properties for block aisi4140
include fatigue parameters, but the material properties for block steel do not
include fatigue parameters. The fatigue calculation is performed for block 100.

4.12.0.1. User Output If the fatigue method is specified in the Solution section then
output for fatigue will be provided. There is no need for a specification in the outputs
section. The following fields will be output.

159

NarrowBandDamageRate: There are two possible equations for DNB depending on if the
material parameters specified for the S-N curve are based on a stress range or peak
stress The Narrow Band damage per unit time, defined as:

˙DNB = ν+
o

A
(
√

2σsFSS)mΓ
(
m

2 + 1
)

(4.10)

for materials defined based on Peak Stress, and

˙DNB = ν+
o

A
(2
√

2σsFSS)mΓ
(
m

2 + 1
)

(4.11)

for materials defined base on the Stress Range. Equation (4.10) is used by default. A
stress range type material can be specified in the input (MaterialType =
StressRange). See the theory manual for details of the parameters.

WirschingDamageRate: The Wirsching damage per unit time. This may be thought of as
a scaled value of the NB damage intensity.

ḊW = λḊNB.

ZeroCrossingRate: the expected positive zero-crossings intensity.

ν+
o =

√
M2
Mo

Damage: The selected damage rate multiplied by time.

D = τḊ (4.12)

Here Ḋ can be either the Narrow Band or Wirsching Damage Rate.

PeakFrequency: the expected peak occurrence frequency.

νp =
√
M4
M2

The even moments, Mx (with x=0,2,4), are output as part of the random vibration
computation, see (4.17). For example, M2 = (VRMS2/2π)2.

160

4.13. Buckling Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

bucklingSolver † ARPACK Eigenvalue computation
algorithm method to use.

Table 4-52. – Buckling Solution Case Parameters.

† The available algorithms are ARPACK, Anasazi and ARPACK_Regular_Inverse.

The buckling keyword is used to obtain the buckling modes and eigenvalues of a system.
The parameters which can be specified for a buckling solution are tabulated below. Users
are encouraged to review the discussion of buckling analyses in.41

The shift parameter indicates the shift desired in a buckling analysis. The shift value
represents a shift in the eigenvalue space (i.e. ω2 space). Determining an effective shift is
problem dependent, but no shift is needed when using the ARPACK_Regular_Inverse
buckling solver option, and any provided shift value will be ignored in that case.

Currently, the ARPACK_Regular_Inverse buckling solver is not the default, but is
considered more robust, easier to use, and more trustworthy than the default ARPACK
option. Currently, all buckling tests in our test suite pass with either ARPACK or
ARPACK_Regular_Inverse, with comparable run times and solution accuracy.

The nmodes parameter specifies the number of requested buckling modes. Its default value
is 10.

Unlike ordinary modal analysis, buckling solution cases require a loads block. This is
because buckling is always specified with respect to a particular loading configuration. For
example, for a pressure load applied on a sideset, the buckling analysis would indicate the
critical amplitude of the applied pressure needed to cause buckling. The critical buckling

161

load is computed as the product of the first (lowest) eigenvalue times the amplitude of the
applied load. Thus, for the case

Loads
sideset 1
pressure = 10.0

end

The lowest obtained eigenvalue is 100.0. The critical buckling pressure would be
Pcr = 100.0×10.0 = 1000.0. This would indicate that buckling would occur if the loading
were applied as,

Loads
sideset 1
pressure = 1000.0

end

Similar conclusions can be drawn about force loads on nodesets.

Buckling of floating structures is not supported at this time. If global rigid body modes are
present, the solution may not be correct. The use of beams and shells in the buckling
solution case is not supported.

Example A Solution section for buckling analysis with a shift of −106 looks like the
following, if 1 mode is needed (i.e. if the use is confident that the modes are well
separated).

Solution
buckling
nmodes 1
shift -1.0e6

end

162

4.14. ModalFilter Solution Case

Parameter Type Default Description

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

write_files
all| none|
output|
history

all
Controls which result files
are written during this
solution.

Table 4-53. – ModalFilter Solution Case Parameters.

A ModalFilter filters modes computed by an eigen solution case (Section 4.9). The filtered
modes are then used by subsequent solution cases.

Since the eigen solution case already outputs the full set of modes to disk, the filtered
modes are not written to disk by default. The write_files parameter selects output of the
filtered modes.

Controlling the modes retained for subsequent analyses can significantly reduce run time
with little effect on the desired response. For example, a shell structure may have many
hundreds of modes contributing to the normal mode response, and only a few that interact
with the loads. 1

If computing eigenvalues, e.g., for CBR, the usual number of modes (nmodes) are
computed. These modes are filtered, and only a subset are written to the Exodus file or
used in subsequent analysis. An example input is shown in input 4.5.

SOLUTION
case eig

eigen
nmodes=500

case filter
modalfiltercase
ModalFilter=MPF1

END

ModalFilter MPF1
remove 1:999
cumulative mef 0.8 0.8 0.8 0.2 0.2 0
add 99:101,103

1The modes of large ship are an example. Only a few of the modes contribute to global bending or torsional
modes. The remaining modes are local, and may not be of interest to the analysis.

163

END

Input 4.5. Example ModalFilter Input

For this example, the following actions are performed in the filter.

1. The first 999 modes are removed. In this case 500 modes are computed, and all
modes are removed.

2. The modes contributing the most to a cumulative modal effective mass are added.
Modes sufficient for 80% contributions to the x, y, and z directions are added. Modes
needed to achieve 20% of the rotational terms for x and y are added. Since the
contribution for rotation about z is zero, no modes are added there.

3. Modes 99, 100, 101 and 103 are added if they are not already included.

Each entry in the modal filter section consists of two parts: an action (like remove or add)
and an application space. The application space for the “add” and “remove” space is an
integer list with a format much like MATLAB. See section 3.1 for more details. Valid
action keywords are listed in Table 4-54.

Keyword Application Space
remove integer list or “all”
add integer list or “all”

cumulative mef 6 fractions
cumulative nmef 6 fractions

Table 4-54. – Modal Filter Keywords.

remove Removes modes in the application space from output.

add Adds modes in the action space.

cumulative mef Adds modes which contribute to the modal effective mass. Following this
keyword sequence, 6 fractions are entered, one for each of the 6 rigid body mode
contributions. The modes are sorted and modes are kept that contribute most to the
modal effective mass. When the fractional contribution exceeds the threshold, no
more modes are added for that direction. Contributions from each direction are
combined (union) and added to the list of modes kept.

The 6 fractions following the keyword indicate the threshold for each coordinate
direction. Each fraction must be between 0 and 1, inclusive. A value of zero means
no modes are retained. A value of unity retains all modes.

cumulative nmef Adds modes which contribute to the normalized modal effective mass.
This option is identical to the “cumulative mef” option except that the terms are
normalized such that the total contribution from all computed modes sums to one.

164

The Modal Effective Mass equals the Modal Participation Factor. The Modal Participation
Factor is defined in the next section.

The Normalized Modal Effective Mass is not defined.

4.15. Modal Participation Factor Solution Case

Parameter Type Default Description

write_table Yes|No Yes If yes write Γ table, if no
write summary table

blockwise Yes|No Yes If yes write blockwise
summary to result table

RCID string 123

A string representing rigid
body modes to include in
the calculation. 123 resents
the translational degrees of
freedom. 123456 includes
all six degrees of freedom.

Table 4-55. – Modal Participation Factor Solution Case Parameters.

A Modal Participation Factor (MPF) is a quality of a mode shape. Another name for the
Modal Participation Factor is the Modal Effective Mass. A MPF is a direction cosine of an
eigenvector along one of the 6 rigid body modes. It measures the interaction of the modes
with a gravity load or a base excitation.

The rigid body modes {Ri}6i=1 ignore any boundary conditions.

The modal participation factor of an eigenvector v of the constrained system is determined
from the representation of v in the unconstrained space, using a lumped mass matrix
3.4.4,

Γij = RTi Mvj√
(RTi MRi)(vTj Mvj)

. (4.13)

Γij is a mass normalized measure of the contribution of a given rigid body term, γi, to the
vector, vj . A summary term which represents the total fraction of a vector that is spanned
by all rigid body modes is also useful.

MPFj =
6∑
i

Γ2
ij (4.14)

165

The MPF method computes these participation factors for the eigenvectors of a system.
This method must be used as part of a multicase solution, and the previous case must be
an eigenvalue problem (see Section 4.9). Further, this method (by default) computes the
modal participation factor on a block by block basis. Thus, those portions of the model
that most contribute to the rigid body motion may be determined. 2 Then,

Γkij = RTi M
kvj√

(RTi MRi)(vTj Mvj)
(4.15)

Options for the MPF method are listed in Table 4-55.

Summary data from the calculation is written to the results file as described in Table 4-56.
In addition, unless write_table=no, data will be written to an external text file. The
format for the file is specified in the results file. It contains the block wise modal
participation factors, Γkij of equation 4.15. An example is provided in input 4.6.

The external text file is intended to be easily read by external programs such as the
MATLAB “load” command. It therefore has no header information. The data ordering is
exactly the same as the table written to the echo file (which contains that header
information). Each column is grouped first by block (in the order of the blocks in the
Genesis file), and then by degree of freedom. Usually there are either 3 or 6 dofs per block
entry. Each row corresponds to a single mode.

The optional external text file with file name extension mpf contains block-wise modal
participation factors. The data is presented in tabular format, separated by white space.
Most data analysis software tools can easily import this type of data for analysis and
plotting (e.g., Microsoft Excel, OpenOffice Calc, Python, MATLAB, Octave, etc.). The
MPF file contains no header information, so it is important to understand what each
column and row represents. Each row of data corresponds to a mode. Columns represent
modal participation factors calculated for each block and requested coordinate (controlled
with “rcid”). The columns are grouped first by block, and then by degree of freedom.
Blocks are written out in the order they are found in the Genesis file (note: they are not
sorted by Block ID or by the order they appear in the input deck). Hence, if the exodus file
contains two blocks and rcid=123 (default), the *.mpf file will contain six columns in the
following order: Block1_x, Block1_y, Block1_z, Block2_x, Block2_y, Block2_z. If
rcid=123456, then six columns per block (x, y, z, Rx, Ry, Rz) will be written out and there
will be 12 columns.

Solution
case eig

eigen nmodes=10
shift=-1e5

case out

2The overall modal contribution is not the sum of the block wise contributions, and contributions from
individual blocks may cancel other blocks. See Table 4-56.

166

Data Value Description
MPF ∑

i(Γij)2 Overall modej MPF
MPF-Bk

√∑
i(Γkij)2 MPF for block k, mode j

MPF by RBMi
∑
j(Γij)2 MPF for direction i

Table 4-56. – MPF Summary data. Each mode, vj , has contributions from each of these
summary values.

mpf
blockwise=yes
RCID=123
write_table=yes

end

Input 4.6. Modal Participation Factor (MPF) Example

Modal Effective Mass There are several definitions of the modal participation factor.
The value from equation 4.13 is unit normalized such that the sum of the squares of Γij
over all modes equals unity. A related term is the modal effective mass.

MEFFij =
√
Moi ·Γij (4.16)

Here Moi is total mass associated with each rigid body mode. The sum of the squares of
MEFFij over all modes, j, for a given rigid body mode, i is the total mass associated with
that RBM. Modal truncation decreases the sum. The modal effective mass table is
output to the result file immediately after the modal participation factors. At the bottom
of the table, the sum of the squares of the modal effective mass is given for each rigid body
mode. The total mass and moments of inertia of the system are also given.

Lumped or Consistent Mass We always use the lumped mass for computation of the
geometric rigid body vectors used in the modal participation factor calculation. These
vectors are mass orthogonalized, and use of the consistent mass matrices for these efforts,
especially when there are MPCs can be complicated in parallel. There is a small error
introduced when the modes are computed using a consistent mass, and the rigid body
vectors use a lumped mass. Refining the mesh reduces the problem, but most accurate
results are obtained when the lumped mass is used (see Section 3.4.4).

167

4.16. ModalFrf Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

complex True|False

If true require use of a
complex eigen solution. If
false require use of a real
valued eigen solution. If
unset use the existing eigen
solution.

lfcutoff Real -Inf

Exclude any modes below
this frequency from the
modal computation. Often
used to exclude rigid body
modes.

usemodalaccel If set, use modal
acceleration method

nrbms Integer 0
Number of rigid body
modes, needed for
usemodalaccel

write_files
all| none|
output|
frequency

all
Controls which result files
are written during this
solution.

Table 4-57. – ModalFrf Solution Case Parameters.

Option ModalFrf is used to perform a modal superposition-based frequency response
analysis. In other words, ModalFrf provides an approximate solution to the Fourier
transform of the equations of motion. If u is the Fourier transform of the displacement, u,

168

and f is the Fourier transform of the applied force, then(
K+ iωC−ω2M

)
u= f(ω).

If the damping matrix is zero, or if it can be diagonalized by the undamped modes, then
ModalFrf uses the undamped modes for the superposition. Otherwise, for general
damping matrices C, complex modes are used for the superposition. In either case,
ModalFrf is performed in a multicase approach, where the modes (real or complex) are
computed in a first case, and then ModalFrf is computed in a subsequent case.

Modal damping can be applied with either real eigenvalues computed by eigen or complex
eigenvalues shapes computed by qevp. However, proportional damping is currently
available only with real modes. For more details on damping, see Section 5.8.

4.16.0.1. ModalFrf with Real-Valued Modes In the case where the undamped real
modes are used for the superposition, two options are available for the ModalFrf solution:
the modal displacement method, and the modal acceleration method. In the case when
complex modes are used, the modal displacement method is available. In both the modal
displacement and modal acceleration methods, the approximate solution is found by linear
modal superposition. Once the modes have been computed, there is little cost in
computation of the frequency response. The solution does suffer from modal truncation,
but in the case of the modal acceleration method, a static correction term partially
accounts for the truncated high frequency terms. Thus, that method is generally more
accurate than the modal displacement method. The most accurate approach, though also
the most computationally expensive, is the directfrf method described in Section 4.7.

For real modes using the modal displacement method, the relation used for modal
frequency response is given below.

uk(ω) =
∑
j

φjkφjmfm(ω)
ω2
j −ω2 + 2iγjωjω

Here uk is the Fourier component of displacement at degree of freedom k, φjk is the
eigenvector of mode i at dof k, and ωj and γj represent the mode frequency and associated
fractional modal damping respectively. In the case of complex modes, the equations need
to be linearized as described in subsection Quadratic Modal Superposition section Solution
Procedures of the Theory Manual.

For the modal acceleration method, the procedure for computing the modal frequency
response is more complicated. The response is split into the rigid body contributions, and
the flexible contributions. The number of global rigid body modes must be specified in the
input deck. Also, see subsection Modal Frequency Response Methods section Solution
Procedures of the Theory Manual.

169

The modal acceleration method more accurately computes the
poles (or peaks) of the response and much more accurately com-
pares the zeros of a function. The cost is an additional factor
and solve. It can be used on floating structures, and the ad-
ditional factor involves the stiffness terms (which are singular)
and has no mass terms to stabilize the solution. Thus, it may be
much more difficult to perform that solve than the other solves
involved in the eigen analysis. To compute eigenvalues of a float-
ing structure, a negative shift is recommended. This removes the
singularity due to rigid body modes. No such approach is possible
if you are using the modal acceleration method. Thus, signifi-
cant “tweaking” of the linear solver parameters may be required
to accurately determine the global rigid body modes required for
success of this method.

The force function must be explicitly specified in the load section, and MUST have a
“function” definition. Note that the force input provides the real part of the force at a
given frequency, i.e. it is a function of frequency, not of time.

The following table gives the parameters needed for ModalFrf section.

Use the nmodes parameter to set the number of eigenvalues needed (see Section 4.9). The
optional keyword, usemodalaccel , is used to determine whether to use the modal
displacement or the modal acceleration method. If this keyword is specified, modal
acceleration is used, otherwise the modal displacement method is invoked. If
usemodalaccel is used, then the number of global rigid body modes must be specified
using nrbms .

The parameters freq_step, freq_min, and freq_max are used to define the frequencies for
computing the shock response spectra. They are identified in the frequency section with
the application region (see Section 8.5). The range of the computed frequency spectra is
controlled by freq_min and freq_max, while freq_step controls the resolution. The
accuracy of the computed spectra does not depend on the magnitude of freq_step. This
parameter controls the quantity of output. Examples are shown in inputs 4.7, 4.8
and 4.12.

We note that, in addition to the output that is sent to the frq file, output is also written
to the Exodus file during a ModalFrf, provided that the keywords are specified in the
outputs section. If nothing is specified in the outputs section, then nothing is written to
the Exodus output files.

In the case of undamped modes, the following is a multicase example of how the ModalFrf
could be specified.

170

Solution
case eig

eigen nmodes=7
shift=-1e5

case out
ModalFrf

end
Frequency

freq_step=300
freq_min=100
freq_max=2500
nodeset=12
acceleration

end

Input 4.7. ModalFrf Example Input

4.16.0.2. ModalFrf with Complex Modes In the case when complex modes are used,
the modal displacement method is available. In this case the qevp solution case is used to
compute the modes. There are currently three methods that can be used with the qevp
solution case, and they are the sa_eigen method, the Anasazi method, and the ceigen
method. For more details, we refer to Section 4.20.0.1. We note that in the case of complex
modes, modal superposition is currently implemented for the sa_eigen method and the
Anasazi method. The ceigen method does not support a subsequent modal
superposition.

Also, when computing the complex modes in preparation for a modal superposition, we
recommend using the reorthogonalization flag. When turned on, this flag searches for
repeated modes and reorthogonalizes the eigenvectors of those modes. Eigenvectors of
repeated modes are not orthogonal. For more details, we refer to Section 4.20.0.1.

In the case of complex modes, the following is an example.

171

Solution
case qevp

qevp
method = sa_eigen
reorthogonalize = Y
nmodes=20
nmodes_acoustic = 5
nmodes_structural = 5

case out
ModalFrf
complex = y

end
Frequency

freq_step=300
freq_min=100
freq_max=2500
nodeset=12
acceleration

end

Input 4.8. Complex ModalFrf Example Input

172

4.17. ModalRanVib Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

noSVD

von Mises stress
computation method,
noSVd is less expensive,
and provides additional
stress moments.

lfcutoff Real 0.1

Exclude any modes below
this frequency from the
modal computation. Often
used to exclude rigid body
modes.

truncation-
Method

none|
displacement|
acceleration

none Truncates modes with low
activity

keepModes integer Inf

Keep the specified number
of modes, kept modes are
selected based on the
highest modal activity.

checkSMatrix true|false true †

Table 4-58. – ModalRanVib Solution Case Parameters.

† If checkSMatrix is true, then at each frequency, the symmetric positive semi-definite correlation
matrix S is computed, and tested for positiveness. An indefinite correlation matrix indicates that
fundamental error has occurred. If PSD output is requested, then matrix evaluations are
enabled.

173

More comprehensive documentation of the Modal Random Vibration method is provided
elsewhere.41 The input the force power spectral density has few tests. There are two
regression tests of the more heavily used Table method, both serial. The alternative
Function Data method only tests a real PSD.

Option modalranvib is used to perform a modal-superposition-based random vibration
analysis in the frequency domain. Root-mean-square (RMS) outputs, including von Mises
stress, are computed for a given input random force function. The resulting power spectral
density functions may also be output at locations specified in the frequency section. The
forcing functions (one for each input) must be explicitly specified in the ranloads section
(7.3.20). It must reference a matrix-function definition (see Section 3.8.17).

modalranvib accepts eigen solution parameters such as nmodes. These are used to
compute an eigendecomposition if one does not yet exist. The eigen parameters should
not be used in a multicase solution.

The optional keyword noSVD determines the method used to compute the RMS von Mises
stress output. If noSVD is specified, then the simpler method which does not use a singular
value decomposition is used. Additionally, that simpler method causes the second and
fourth moments associated with von Mises stress to be computed and to be written to
Exodus output. (The RMS von Mises stress and these two moments, along with the
appropriate material properties, can be used in a manner suggested in [66] and discussed in
[67] to estimate fatigue life in broad-band random excitation. Also, see the fatigue section
(4.12). However, this method provides no information about the statistics of the stress.
Only the RMS value and moments are reported.

The optional keyword lfcutoff provides a low frequency cutoff for random vibration
processing. Usually, rigid body modes are not included in this type of calculation if RMS
stress is computed. The lfcutoff provides a frequency below which the modes are ignored.
The default for this value is 0.1 Hz. Thus, by default rigid body modes are not included in
random vibration analysis. A large negative value will include all the modes.

The optional keyword TruncationMethod provides control over selection of the retained
modes. By default, modes are retained if they have any contribution to the stress. As
stresses are proportional to displacement, the default method is displacement. It is
possible to not truncate at all (none), or to truncate based on accelerations
(acceleration). Acceleration contributions are weighted to higher frequencies. Often zero
energy modes contribute to a bad truncation, and a preferred means of controlling the
truncation is to use the lfcutoff parameter and to ensure the integration does not go to
zero frequency.

The optional keyword keepmodes is a method of truncating modes. By default, its value
is nmodes. If a value is provided, the modes with the lowest modal activity will be
truncated until keepmodes remain. Note that this procedure is much different from
truncating the higher-frequency modes. Modal truncation is important because all the
operations compute responses that require O(N2) operations. Even if keepmodes is not

174

entered, modes with modal activity less than 1 millionth of the highest active mode will be
truncated.

The parameters freq_step, freq_min, and freq_max are used to define the frequencies for
computing the random vibration spectra. They are identified in the frequency section
along with an optional application region (see Section 8.5). The range of the computed
frequency spectra is controlled by freq_min and freq_max, while freq_step controls the
resolution. The accuracy of the computed spectra does depend on the magnitude of
freq_step since it is used in the frequency domain integration. Examples are presented in
inputs 4.7, 4.8 and 4.12.

In random vibration, the frequency block serves two purposes. First, it is used for the
integration information for the entire model. Thus, Γqq for the referenced papers48,39 is
integrated over frequency and used for all output. In addition, if an output region is
specified in the frequency block, output acceleration and displacement power spectra may
be computed for the given region at the required frequency points. At this time,
acceleration and/or displacement may be specified in the frequency block for random
vibration analysis. This output is described in more detail below.

Random vibration analysis is trickier than most input. A number of blocks must be
specified.

1. The Solution block requires the input for eigen analysis, and the keyword
modalranvib.

2. The RanLoads block contains a definition of the spectral loading input matrix and
other input. Note that the input, SFF is separated into frequency and spatial
components. The spatial component is specified here using load keywords. See
Section 7.3.20. The spectral component is referred to here, but details are provided in
the matrix-function section.

3. The matrix-function section contains the spectral information on the loading. It
references functions for the details of the load. The real and imaginary function
identifiers for this input are specified here (3.8.17).

4. There must be a function definition for each referenced spectral function. Functions
of time or frequency are further described in Section 3.8.

5. There must be a frequency block that is used for integration and optionally also for
output of displacement and acceleration output. See Section 8.5.

6. As an undamped system is singular, some type of damping is required. Modal
damping terms are required. 3 See Section 5.8.

7. boundary conditions are supplied in the usual way, but the standard loads block is
replaced by the input in the ranloads section. The loads block will be quietly ignored
in random vibration analysis.

3Proportional damping, such as is applied with the alpha and beta terms, will not work in modalranvib.

175

8. The outputs and echo sections will require the keyword vrms for output of RMS
von Mises stress. If the stress keyword is also found, then the natural stresses for
solid elements will be output. 4 The keywords rotational_displacement and
rotational_acceleration in the outputs and frequency sections will output the
corresponding RMS and PSD quantities respectively. Quantities output are listed in
Table 4-59.

All other input should remain unchanged.

Keyword Output Variable Description
Vrms vrms Root Mean Squared von Mises Stress

D1...D5 von Mises Stress SVD moments. Details in.49

M0, M2, M4 von Mises Stress moments. noSVD
Xrms X component of RMS displacement
Yrms Y component of RMS displacement
Zrms Z component of RMS displacement
Axrms X component of RMS acceleration
Ayrms Y component of RMS acceleration
Azrms Z component of RMS acceleration

rotational_displacement RotXrms Rotational X component of RMS displacement
RotYrms Rotational Y component of RMS displacement
RotZrms Rotational Z component of RMS displacement

rotational_acceleration RotAxrms Rotational X component of RMS acceleration
RotAyrms Rotational Y component of RMS acceleration
RotAzrms Rotational Z component of RMS acceleration

Table 4-59. – ModalRanVib Output to Exodus File. The stress spectral moments are neither
computed nor output if noSVD is selected. The stress moments are available if noSVD is selected,
and may be used for fatigue. The RMS values of displacements and acceleration are components
of a Hermitian tensor. See Section 4.17.0.1 for details.

4.17.0.1. Power spectral density When requested in the frequency block, one output
from the random vibration analysis is a power spectral density or PSD (for displacement or
acceleration). The power spectral density is a measure of the output content over a
frequency band, and usually measured in units of cm2/Hz or some similar unit.
Acceleration PSDs are often measured in units of g2/Hz. 5

Like the input cross spectral forces, the output quantities are Hermitian, with 9
independent translational quantities per frequency, at each output node for each type of
output. The method for transforming these quantities in alternate coordinate systems are
in subsection Modal Frequency Response Methods section Solution Procedures of the

4These stresses are linear functions of the displacement.
5Power spectral density output is requested in the frequency block. A collection of nodes is indicated
and the displacement or acceleration keyword is entered. PSDs of displacement or acceleration are
available.

176

Theory Manual. The rotational terms can be requested using the keywords
rotational_displacement or rotational_acceleration. Note that the cross correlation
terms for rotation are not output.

Axx Axy + iAxyi Axz + iAxzi − − −
Axy− iAxyi Ayy Ayz + iAyzi − − −
Axz− iAxzi Ayz− iAyzi Azz − − −

− − ARotxRotx − −
− − − ARotyRoty −
− − − − ARotzRotz

Because the inputs are specified in terms of force cross-correlation functions, the standard
procedure for applying loads often involves application of a large concentrated mass at the
input location. The force may then be applied to the mass and the acceleration determined
from a= f/m, where we assume that m is much larger (100 to 1000 times larger) than the
mass of the remainder of the structure. Some confusion can arise in the scaling of the
force.

The output PSD for acceleration is defined as follows.

Gij =H†kiSklHlj

Hlj is the transfer function giving aj/fl, and Skl is a power spectral density input. It has
units of force2/Hz.

Consider a single input, i.e. k = l, and with fk =mkak.

Gij =H†ki〈mkak,akmk〉Hlj (4.17)
= (m2

k)Hki〈ak,ak〉Hkj (4.18)

Thus, the acceleration PSD must be multiplied by the square of the mass to get the force
PSD. Sierra/SD applies the scale factor to the spatial force distribution (which is also
squared), so the scale factor in Sierra/SD should be mk.

177

4.18. ModalShock Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to
extract. See Section 4.9.1

shift Real -1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
Section 4.9.2

untilfreq Real Inf Target frequency to reach.
See Section 4.9.2.1

ModalFilter string none
Modal filter to define modes
to retain. See
Section 4.9.2.2

srs_damp Real 0.03
Damping coefficient used
for the shock response
spectra calculation

Table 4-60. – ModalShock Solution Case Parameters.

The modalshock solution method is used to perform a modal-superposition-based implicit
transient analysis followed by computation of the shock response spectra for the degrees of
freedom in a specified node set. More information about the about shock response spectra
solution cases is given in Section 4.28 describing implicit-transient-based SRS.

A frequency block must also be included in the input deck for modalshock solution cases
to define the frequencies and nodesets for computing the shock response spectra (see
Section 8.5). The parameters freq_step, freq_min, and freq_max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see Section 8.5). The range of the
computed frequency spectra is controlled by freq_min and freq_max, while freq_step
controls the resolution. The accuracy of the computed spectra is not dependent on the
magnitude of freq_step. This parameter controls the quantity of output. Examples are
presented in inputs 4.7, 4.8 and 4.12.

178

4.19. ModalTransient Solution Case

Parameter Type Default Description

time_step Real Time step size. See
Section 4.29.0.1

nsteps Integer Number of time steps to
take. See Section 4.29.0.2

start_time Real 0.0 Solution case start time.
See Section 4.29.0.3

nskip Integer 1 Results output frequency.
See Section 4.29.0.4

rho Real 1 Select time integrator. See
Section 4.29.1.1

load Integer
Load to apply during
solution case. See
Section 4.29.0.5

write_files
all| none|
output|
history

all
Controls which result files
are written during this
solution.

lfcutoff Real -Inf

Exclude any modes below
this frequency from the
modal computation. Often
used to exclude rigid body
modes.

flush integer 50

Defines how often results
are written to the exodus
results file. See
Section 3.4.1

Table 4-61. – ModalTransient Solution Case Parameters.

Option modaltransient is used to perform a modal-superposition-based implicit transient
analysis. Damping for the model is defined in Section 5.8.

179

The parallel solution of modal transient may be slower than
expected: while the eigendecomposition parallelizes well, there
is not enough computation to parallelize the modal calculation.
Only those DOFs requested for output are included in the so-
lution. Thus, requesting output on only a small subset of the
model can improve solution speed.
If output is required at few locations, we recommend setting
write_files to history, or specifying an empty outputs def-
inition. Note that an empty outputs definition applies to all
solution cases, whereas write_files applies only to the current
solution case. Forces and displacements on modal degrees of free-
dom are also available via the keyword modalvars in the echo
definition.

modaltransient supports restart in the eigen part of the analysis, the modaltransient
part, or both. In the latter case, two things would happen first. Any modes from the
modal restart file are read, and the time history data from any previous transient restart
files (direct or modal) is read. Afterwards stepping in time continues.

An example of restart with the modaltransient solution is given below. In this case, the
modal solution is restarted prior to the modaltransient solution. The eigendecomposition
would proceed as follows

Solution
case eigen

eigen
nmodes 10

restart=write
end

and, subsequently, the eigen restart and modaltransient would be:

Solution
case eigen

eigen
nmodes 20

restart=read
case modaltrans

modaltransient
nsteps 100
time_step 1.0e-3
restart=write

end

180

The previous modaltransient cannot restart from the last computed time step when
computing additional time steps. To restart it is necessary to add option write in the
modaltransient case. For example, one could then do the following:

Solution
case ’eigen’

eigen
nmodes 20

restart=read
case ’modaltrans’

modaltransient
nsteps 100
time_step 1.0e-3
restart=write

case ’modaltrans’
modaltransient

nsteps 200
time_step 1.0e-3
restart=read

end

4.20. QEVP Solution Case

Parameter Type Default Description

Table 4-62. – QEVP Solution Case Parameters.

Note: Options for the qevp solution case depend on the algorithm used and are
documented below.

4.20.0.1. Quadratic Eigenvalue Methods Comparison The quadratic eigenvalue
problem is defined as, (

K+Dλ+Mλ2
)
u= 0 (4.19)

The solution of the quadratic eigenvalue problem (4.19), has applications in a variety of
physics solutions including coupled structural acoustics, general eigenvalue systems with
damping, and gyroscopic systems for rotating structures. Various methods have been
developed to address the solution to these problems. The solution to the problem is
difficult, and knowledge of the types of systems encountered can help significantly in
addressing the robustness of each of the methods. The methods are listed and described in
the following paragraphs. Table 4-63 lists recommended procedures for different problem
sets.

181

Anasazi: It is possible to use the Anasazi method, although more testing is needed. It can
be used to address two problem areas, 1) the coupled structural acoustics problem,
and 2) gyroscopic systems from rotating frames. Currently, it requires that both the
mass and the stiffness matrix be non-singular. Previous versions of Sierra/SD used
the solution case qevp with no method keyword to denote the Anasazi method, and
it is the default method to keep consistent with this syntax.

A couple of the parameters for the Anasazi solver for quadratic eigenvalue problems
are described in the Table 4-48. Here shifts are not supported, and a warning
message may be avoided by setting shift to zero. Restarts are not supported either;
set implicit_restarts to 1. Restarts make the capability easier to use. Without
restarts the user is required to set the subspace size, subspace_size, to be
sufficiently large. The way that the algorithm works is to compute all the modes, and
then compare a relative residual to eig_tol. If the residuals are large, the modes are
not returned to the user. It can be helpful to use a larger value of eig_tol than the
default, say 10−8. In this situation, it is helpful to set anverbosity to a large value,
say And then examine other diagnostic information, including the data written to the
screen, to ascertain the accuracy of the modes.

CEIGEN: The ceigen method uses methods in ARPACK to solve the quadratic eigenvalue
problem. Of methods in Sierra/SD, it is the oldest, and probably the least robust.

SA_EIGEN: The sa_eigen method solves a coupled structural acoustics problem by
solving a linear, uncoupled eigenvalue problem on each of the domains, and using
them as a basis to reduce the coupled equations to a dense system. The dense system
is solved using LAPACK routines. The method is applicable to structural/acoustic
systems. It is robust. Modal truncation can introduce significant errors. Some
solutions can fail (or convergence may be slow) because the decomposition tools know
nothing about the two domains.

PROJECTION_EIGEN: The projection_eigen method solves the quadratic eigenvalue
problem by projecting the problem into a subspace corresponding to the real-valued
modes. This smaller subspace is constructed by neglecting the damping matrix,
symmetrizing the stiffness matrix, and solving the eigenvalue problem,

Ku= λMu. (4.20)

This smaller problem is then used as a basis for solving the original quadratic
eigenvalue problem, which takes the form

Ku+λCu+λ2Mu= 0 (4.21)

The original quadratic eigenvalue problem is then pre and post multiplied by the
eigenvectors obtained from the subspace eigenvalue problem. This results in a small
quadratic eigenvalue problem which is then solved with a LAPACK method. Finally,
the modes from the reduced space are projected to the space corresponding to the
original quadratic eigenvalue problem.

182

As with the sa_eigen method, truncation error is a concern with the
projection_eigen method. The more modes one takes, the smaller the truncation
error.

Problem Ceigen SA_eigen Anasazi Projection_eigen
Damped Systems Acceptable Acceptable Fails Acceptable
structural acoustics Fails Acceptable Acceptable Acceptable
Rotational systems N/A N/A Acceptable Acceptable

Damped structural/acoustics Fails Acceptable Fails Acceptable

Table 4-63. – A 2005 Comparison of Quadratic Eigenvalue Problem Methods. Although
Ceigen and Anasazi have changed substantially since 2005, this table has not been updated to
reflect those changes.

Use the keyword method followed by the name of the method (Anasazi, ceigen, sa_eigen,
Projection_eigen) to select a qevp method. Below is a more detailed description of each
qevp method, their parameters, and examples of how to use them.

4.20.1. Anasazi

The Sierra/SD interface to the Trilinos package Anasazi solves the quadratic eigenvalue
problem defined as (

K+Dλ+Mλ2
)
u= 0 (4.22)

See Section 4.20.0.1 for a comparison of these methods for this problem. As currently
implemented, the Anasazi method applies to systems with a non-singular mass and
stiffness matrix. The damping matrix may be asymmetric. Options for input are described
in Table 4-64. An example is given below.

Table 4-64. – Options for qevp Anasazi Solutions.
Option Argument Default Comment
nmodes Integer 10 number of modes
shift Real 0 ignored

reorthogonalize Yes/No/Full “Yes” Reorthogonalize vectors
check_diag Yes/No/Full “Yes” Check that vectors

diagonalize linearized system
ANverbosity Integer 17 Anasazi verbosity
ANblocksize Integer 1 Anasazi Block Size

Although modal truncation methods are an industry standard, the results sometimes are
inaccurate. A solution may not to change when the number of modes increases, and still be
inaccurate. Verification is entirely up the user in every case with modal truncation
methods.

183

Users have never prioritized enhancing the usability of Anasazi or CEigen. In addition to
the shift, users must select eig_tol. But discerning an effective value depends on the
problem, especially on the shift and the linear solver accuracy. Too large a threshold
(> 1.e−4) degrades solution accuracy. Too small a threshold (< 1.e−13) leads to
divergence. However, with these methods, diagnostic information is provided (written to
the standard output stream) to guide users with problem configuration and solution
verification.

Solution
case qevp

qevp
method=Anasazi
nmodes=14
anverbosity=27

end

4.20.2. Damped Eigenvalue Problems

The qevp solution with “method=ceigen” is used to select complex eigen analysis using
the ARPACK package. This computes the solution to the quadratic eigenvalue problem,(

K+Dλ+Mλ2
)
u= 0 (4.23)

Note that two other solution methods may also be used to evaluate the quadratic
eigenvalue problem. Each of these methods has its strengths and weaknesses. A
comparison of these methods is provided in Section 4.20.0.1.

The following table gives the parameters needed for complex (non-Hermitian) eigenvalue
problems. Additionally, the eigenvalue tolerance can be set with the eig_tol parameter in
the parameters block (Section 3.3).

Parameter Type Default Description

nmodes Integer 100
Number of modes to
compute, reported as
complex conjugate pairs

viscofreq Real 1e-6 Frequency at which to
evaluate material damping

Table 4-65. – ceigen Solution Case Parameters.

The optional viscofreq keyword indicates the frequency at which the damping properties
of viscoelastic materials will be computed. It must be non-negative. The viscofreq

184

Table 4-66. – Ceigen Tests.

Name Description
ceig stiffness proportional damping
ceig_visco viscoelastic damping
ceig_dash dashpot damping
steel_in_foam complex mixed materials

parameter can be confusing. In particular, viscoelastic materials typically have high
damping at lower frequencies, and lower damping at high frequencies. The viscofreq
parameter sets a frequency from which we estimate all the viscoelastic damping. Thus, if
viscofreq is small, the damping is large. In particular, if viscofreq is below the glass
transition frequency, then damping appropriate to the low frequency modes will be used.
This high value of damping is applied to the entire spectrum. It is generally better to
over-estimate viscofreq than to underestimate it.

The reason for this difficulty is that even linear viscoelastic materials generate a more
complex equation than that shown in equation 4.23. With a single term in the Prony
series, the equation of motion for a damped viscoelastic structure can be written in the
frequency domain. (

K+D
s

s+ωg
+Ms2

)
u= f(s) (4.24)

Here s is the Laplace transform variable and ωg = 1/τ is the reciprocal of the relaxation
constant. This system is not a simple quadratic in s. Effectively, viscofreq approximates
this system with the linearized system below.

(
K+D

s

2π ·viscofreq+ωg
+Ms2

)
u= f(s) (4.25)

Eigendecomposition of damped models is more difficult, and much less mature than
ordinary eigenvalue problems. The system of equations is more difficult, and more “tricks”
must be used to resolve issues that are generated, such as decreasing eig_tol. Even the
post-processing can be complicated. As usual, one must request displacement output in the
output section (see 8.1.13). The output file contains 12 fields (six real and six imaginary).
Few post-processing tools handle complex mode shapes. Also, see subsection Complex
Eigen Analysis — Modal Analysis of Damped Structures section Solution Procedures of
the Theory Manual.

Because of the challenges of solving complex eigenvalue problems, it is important to
understand the problems for which we have evaluated and tested it. The tests in the test
suite are listed in Table 4-66.

185

4.20.3. SA_eigen

The qevp procedure with method SA_eigen provides a means of computing the modal
response of a coupled structural acoustic system, using a modal truncation basis. The
quadratic eigenvalue problem describing this system can be written as follows.([

Ks 0
0 Ka

]
+λ

[
Cs L
−ρaLT Ca

]
+λ2

[
Ms 0
0 Ma

])[
φs
φa

]
= 0 (4.26)

Here the subscripts refer to structural or acoustic domains, ρa is the density of the fluid
and L is a coupling matrix. Note that for this formulation, φa represents the acoustic
velocity potential, which relates to the time derivative of the acoustic pressure, φa =∇u̇a.
It helps to understand42 the capabilities and limitations of this analysis.

The sa_eigen method solves this system by solving for the uncoupled eigenvalues in the
two domains, using them as a basis to reduce the coupled equations to a dense system, and
solving the dense system. Thus, it uses a modal reduction technique similar to the
Craig-Bampton methods (section 4.4) to generate a dense system of equations that are
solved and results propagated to the physical space. More details are available in the
theory manual.

Options of the analysis are provided in Table 4-67, and an example is provided in input 4.9.
Boundary conditions are applied exactly as for the generalized eigenvalue problem.
Exterior, non-reflecting boundary conditions may be applied, but modal convergence is
poorer. Loads are irrelevant. Output is complex, as for the ceigen case (4.20.2).

Solution
case sa_eigen

qevp
method=sa_eigen
nmodes=20
nmodes_acoustic=50
nmodes_structure=26
acoustic_lfcutoff=-1
structural_lfcutoff=-1
sort method = frequency

end

Input 4.9. SA_Eigen Example

Limitations: This is a modal superposition method. The Sierra/SD interface to the
Trilinos package Anasazi is a more complete but less robust method which does not
rely on modal truncation. The SA_eigen method is accurate for many structural
acoustic environments. Damping may be provided, but does tend to slow
convergence. The method also depends on the solution to separate structural and

186

Option Args Description
nmodes int Number of requested eigenvalues

nmodes_acoustic int Number of free-free acoustic modes in the re-
duction. Defaults to 2·(nmodes).

nmodes_structure int Number of free-free structural modes in the re-
duction. Defaults to 2·(nmodes).

acoustic_lfcutoff Real Low frequency cutoff to filter acoustic modes.
By default, all modes are retained

structural_lfcutoff Real Low frequency cutoff to filter structural modes.
By default, all modes are retained.
Used to eliminate negative modes

shift Real Eigen shift used in computation of the subre-
gion modes. See 4.9.

sort method string magnitude: complex magnitude of λ
frequency: Sort by frequency and then damp-
ing.
damping: Sort by damping and then fre-
quency.
truefreq: Sort by frequency... avoiding zero
energy round off.
none: Multicase requires None

linearization int 1 A = [0 I; -K -C]; B = [I 0; 0 M]
2 A = [-K 0; 0 M]; B = [C M; M 0];
4 A = [0 -K; M 0]; B = [M C; 0 M];
These follow the linearizations in Tisseur

reorthogonalize string no: no reorthogonalization
yes: reorthogonalize all modes
full: check all modes

check_diag string no: no check for orthogonalization
yes: check redundant modes
full: check all modes

Table 4-67. – SA_Eigen Options.

187

acoustic subregion eigen problems. These solutions are not as robust as full system
eigen analysis. Please see the notes in the verification manual for convergence details.
Table 4-68 summarizes the status of this procedure.

Low Frequency Cutoff: The parameters acoustic_lfcutoff and structural_lfcutoff remove
low frequency modes before initiating the qevp. This will reduce the number of
modes (nmodes_acoustic and nmodes_structure) in the analysis. Negative cutoff
frequencies are allowed.

Analytic Verification Tested Parallel User
Reference Section Test Test

31 43 Y Y some

Table 4-68. – Verification Summary for SA_Eigen.

Specialized Output: There are a few items that are output specifically for the sa_eigen
procedures that can be helpful in assessing the solutions.

StructuralFraction It is useful to know which modes participate in which regions.
This is computed as follows.

Let φ be the eigenvector computed on the reduced space. We divide φ into its
structural and acoustic components. i.e.,

φ=
[
φs
φa

]
We compute,

Fstructure = φ†s ·φs
φ†s ·φs+φ†a ·φa

(4.27)

where φ† represents the complex conjugate transpose of φ. Note that these
products are computed in the reduced space which has coordinates associated
with each structural or acoustic eigenvalue. In the reduced space, the mass
matrix is identity, and the vector product, φ† ·φ represents an energy norm.

AcousticFraction The acoustic fraction is the analogue of the structural fraction (eq.
4.27) applied the acoustic domain. It represents the portion of the system level
complex eigenvalue that is associated with the acoustic domain.

ErrorNorm We define a normalized modal energy residual.

Enresid = |φ
†(k+λc+λ2M)φ|

φ†Kφ
(4.28)

Here φ and λ are the estimates of the eigenpairs computed using the modal
approximation technique. The matrices, k, c and m are the fully assembled
stiffness, coupling and mass matrices. This residual norm is a measure of the
relative accuracy of the eigenvalue solution. It is available in both the text
results files and the output Exodus files, and should be consulted to determine
the convergence.

188

Option Args Description
nmodes int Number of requested eigenvalues
shift Real Eigen shift used in computation of the subre-

gion modes. See 4.9.
reorthogonalize string no: no reorthogonalization

yes: reorthogonalize all modes
full: check all modes

check_diag string no: no check for orthogonalization
yes: check redundant modes
full: check all modes

sort method string magnitude: complex magnitude of λ
frequency: Sort by frequency and then damp-
ing.
damping: Sort by damping and then fre-
quency.
truefreq: Sort by frequency... avoiding zero
energy round off.
none:

Table 4-69. – Projection_Eigen Options.

4.20.4. Projection_eigen

The Projection_Eigen method is the most robust of all the solvers available for quadratic
eigenvalue problems. Options of the Projection_Eigen solver are provided in Table 4-69.
These parameters are identical to those for the sa_eigen method.

189

4.21. NLStatics Solution Case

Parameter Type Default Description

tolerance Real 1e-6 Controls completion of the
Newton iteration.

max_newton_
iterations Integer 100

If the iteration count
exceeds this value before
reaching tolerance, the
Newton loop is considered
to have failed.

update_
tangent Integer 101

How often the tangent
stiffness matrix is rebuilt
during the Newton
iterations.

num_newton_
load_steps Integer 1

Number of load steps used
to incrementally step up to
the final equilibrium
position

Table 4-70. – NLStatics Solution Case Parameters.

If stiffness matrix K is a function of the displacement u in

K(u) = f,

then use NLstatics for nonlinear statics. Newton’s method applied to the residual force
equations to drive the residual r = p−f to zero. The residual vector r is the difference
between the internal force vector p and the external force vector f . The internal force
vector is a function of the structural displacements (and possibly velocities). External
forces can also be a function of the structural displacements in the case of follower loads
such as surface pressure loads.

The tolerance keyword provides control over the completion of the Newton iteration.
Once the change in the L2-norm of the displacement decreases below tolerance, the loop
completes successfully.

The num_newton_load_steps keyword controls the number of load steps used to
incrementally step up to the final equilibrium position. Large loads may cause the Newton
algorithm to diverge. If this occurs, increase the number of load steps applied.
Displacements will be output after each load step which may be animated similar to
transient dynamics simulations.

190

The update_tangent keyword controls how often the tangent stiffness matrix is rebuilt
during the Newton iterations. The default is set to update the tangent stiffness matrix at
the beginning of a load step. Setting update_tangent to 1 is equivalent to using a
full-Newton algorithm where the tangent stiffness matrix is rebuilt after each Newton
iteration. For nonlinear (difficult) problems, this option may be optimal, but for most
problems the extra cost of assembling a preconditioning the tangent stiffness matrix should
be amortized over several solves. Note that for this option to improve Newton’s method,
the element types in the model must have the tangent stiffness method implemented.

An example Solution section is shown below.

Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split load into 10 increments
update_tangent = 1 // full-newton algorithm

end

191

4.22. NLTransient Solution Case

Parameter Type Default Description

time_step Real Time step size. See
Section 4.29.0.1

nsteps Integer Number of time steps to
take. See Section 4.29.0.2

start_time Real 0.0 Solution case start time.
See Section 4.29.0.3

nskip Integer 1 Results output frequency.
See Section 4.29.0.4

rho Real 1 Select time integrator. See
Section 4.29.1.1

load Integer
Load to apply during
solution case. See
Section 4.29.0.5

write_files
all| none|
output|
history

all
Controls which result files
are written during this
solution.

tolerance Real 1e-6 Controls completion of the
Newton iteration.

max_newton_
iterations Integer 100

If the iteration count
exceeds this value before
reaching tolerance, the
Newton loop is considered
to have failed.

update_
tangent Integer 101

How often the tangent
stiffness matrix is rebuilt
during the Newton
iterations.

flush integer 50

Defines how often results
are written to the exodus
results file. See
Section 3.4.1

Table 4-71. – NLTransient Solution Case Parameters.

The NLtransient solution method is used to perform a27 direct implicit nonlinear
transient analysis. A projector-corrector step is used. Note that for a linear system, the

192

NLtransient analysis will require two solves per time step.

The tolerance keyword provides control over the completion of the Newton iteration.
Once the change in the L2-norm of the acceleration decreases below tolerance, the loop
completes successfully. Note the difference viz a viz NLstatics (4.21), where tolerance
instead refers to the displacement.

If the iteration count in a given time step exceeds max_newton_iterations, the Newton
loop is considered to have failed. Thus, note that max_newton_iterations is not the
limit for the total number of Newton iterations, as it is in the NLstatics (4.21) case, but is
instead the limit on the number of iterations per time step.

In a NLstatics (4.21) analysis, load stepping can be used to help the convergence of the
Newton loop by cutting the total load into a series of incremental steps. This is controlled
with the num_newton_load_steps keyword. However, in NLtransient analysis, load
stepping makes no sense because the dynamic response of a structure subjected to a total
load is different from the response to a series of incremental loads. In effect, the load
stepping is replaced by time stepping in the case of nonlinear transient analysis. Thus, the
keyword num_newton_load_steps is inactive for nonlinear transient analysis.

For NLtransient problems, if Newton’s method diverges, either the tangent stiffness
matrix has to be updated more often (see update_tangent) or the time-step should be
decreased.

The update_tangent controls how often the dynamic tangent stiffness matrix is rebuilt
during the Newton iterations. The default is set to 101, and thus unless a given Newton
loop takes more than 101 iterations, the tangent matrix will not be updated by default.
Setting update_tangent to 1 is equivalent to using a full-Newton algorithm where the
dynamic tangent stiffness matrix is rebuilt after each Newton iteration. Note that currently
there is no option for forcing a tangent update at the beginning of each time step, unless
the update_tangent keyword is set to exactly the number of Newton iterations taken per
time step. For non-linear problems, some control of this option is recommended. Note, for
this option to improve Newton’s method, the element types in the model must have the
dynamic tangent stiffness method implemented.

4.23. Random Vibration Solution Case

Parameter Type Default Description

Table 4-72. – Random Vibration Solution Case Parameters.

See (4.17).

193

4.24. Receive_Sierra_Data Solution Case

Parameter Type Default Description

include_
internal_force off|on on

Include or disable
computation of initial
internal force

no_geom_stiff Turn off the geometric
stiffness term

Table 4-73. – Receive_Sierra_Data Solution Case Parameters.

Solution case receive_sierra_data inputs a deformed or preloaded model state.
Calculations in Sierra codes such as Sierra/SM may be input to Sierra/SD. This
provides the ability to compute large strain nonlinear responses in a separate code,
followed by a supported solution case in Sierra/SD.

The primary use cases are as follows.

a. Preload from Sierra/SM, where displacements and stresses are passed, Sierra/SD
reads those, adjusts the tangent stiffness matrix, and computes modes.

b. Preload from Sierra/SM, where displacements and stresses are passed, Sierra/SD
reads those, adjusts the tangent stiffness matrix and equilibration forces, and then
computes a transient response to a user specified load

c. Implicit or Explicit transient analysis in SM, followed by a hand-off to an implicit
transient in Sierra/SD. By default, Sierra/SD will start at the end time of the
Sierra/SM hand-off analysis. In addition to changing the stiffness matrix
formulation the mass matrix will be recomputed based on the deformed
configuration. In order to exactly conserve mass between the SM and SD calculation
the element-by-element deformed material density should be output by SM and used
by SD.

Solution method receive_sierra_data helps with the following.

1. Update the initial geometry from the previously computed displacements.

2. Update the element stiffness matrices due to preload stresses. This is the geometric
stiffness correction. The geometric stiffness correction is supported for volumetric and
membrane elements at this time. Stress transfer for shells and beams is not enabled.
The geometric stiffness calculation may be disabled with the no_geom_stiff
keyword.

3. Compute and apply an initial force associated with the input stress state. Disable
this by setting include_internal_force=off command.

194

4. Update of tangent stiffness of materials based the preloaded material state.

receive_sierra_data solutions require a multi-case solution. An example follows. In this
example preload data is received from the input Exodus file, that preload alters the
stiffness matrix, and eigenvalues are computed using this updated stiffness matrix.

Solution
case transfer

receive_sierra_data
case eig

eigen
nmodes=40
shift=-3e6

end

The receive_sierra_data solution is specifically designed to read initial conditions and
tangent stiffness state computed in a Sierra/SM analysis. Note that connections between
different parts of the model specified in the Sierra/SM input deck are not transferred,
e.g., contact conditions, MPCs, and joints. These conditions may be equivalently specified
in Sierra/SD. The following options are available to receive_sierra_data.

include_internal_force When set to the default value (on), the imported stress state is
integrated to generate an internal force body load. This load is included in the
right-hand side of subsequent static or transient analysis. If the Sierra/SM preload
analysis is in static equilibrium, the externally applied forces from boundary
conditions will be in balance with the internal forces generated by the elements. By
default, the internal forces will be computed again in Sierra/SD. Thus, if the same
forces are included in the Sierra/SD input deck that causes the preload in
Sierra/SM, then the internal force should be included to keep the model in static
equilibrium. An alternative is to exclude the boundary conditions causing the preload
from Sierra/SD and set include_internal_force=off. In this case, Sierra/SD
will compute no initial internal force, and the initial state of the model will be
treated as perfect equilibrium. See the verification manual chapter “Sierra/SM to
Sierra/SD Coupling” for more detail on this topic.

no_geom_stiff Can be used to ignore the preloaded stress contribution to the geometric
stiffness matrix. Generally, elements in tension have higher effective stiffness, and
elements in compression have lower effective stiffness. At sufficiently large
compression, element stiffness can go negative, which causes severe problems for
solver stability. Turning off geometric stiffness can be used for debugging purposes, or
to evaluate what effect the geometric stiffness term has on model response. See the
verification manual chapter “Sierra/SM to Sierra/SD Coupling” for more detail on
this topic.

option start_time is needed if a simulation does not restart the input. The
start_time sets the initial time of a transient analysis. By default, a transient case

195

begins where a previous transient solution case ended, or the time transferred from a
receive_sierra_data or other preload solution case. Otherwise, the default start
time is 0.0. To set the start time in the input deck specify start_time.

Geometric stiffness If stiffness properties are not transferred from SM to SD, then
it is often more accurate for SD to contribute a Geometric Stiffness to the input
stiffnesses. This capability has been available for a long time. Geometric stiffness is
added by default. On the other hand, many examples use no_geom_stiff to not add
it.

Since release 5.10, it is possible to transfer the state of SM, including the material
state. Sierra/SM certainly can represent Geometric stiffness. If stiffness is
transferred, one might assume that the transferred state includes this stiffness
contribution. However, the answer turns out to be complicated. The Guitar String
training example is a great example of a model that still requires the Geometric
stiffness contribution.

A case study of using Geometric stiffness with input from SM is presented in the
Verification Manual [43][Section 2.3].

4.24.1. Receiving SM User Defined Data

The purpose of receive_sierra_data is transfer of data from a previous Sierra/SM
analysis to Sierra/SD. Data relevant to the load is mostly transferred automatically based
on expected naming conventions. The fields relevant to receive_sierra_data are given in
tables 4-74 to 4-76.

Exodus Description <key> (for Effect
Label initialize variable name)
displ_x nodal displacement(x) Added to mesh
displ_y displacement displacement(y) coordinates, the initial
displ_z displacement(z) mesh configuration.
vel_x nodal velocity(x) Used to set initial
vel_y velocity velocity(y) conditions for
vel_z velocity(z) transient analysis
rv_x and rotational_velocity(x)
rv_y rotation rotational_velocity(y)
rv_z rotational_velocity(z)
force_internal_x force from force_internal(x) Used for equilibrium
force_internal_y stress state force_internal(y) diagnostics
force_internal_z force_internal(z)

Table 4-74. – Nodal data used in receive_sierra_data.

Only accurately labeled data will be transferred from the Exodus file. An exact match is
typically required, although some variables have multiple valid names. For example,

196

Exodus Description <key> (for Effect
Label initialize)

variable name)
stress_xx volumetric stress(xx) Used to compute
stress_yy stress stress(yy) geometric stiffness
stress_zz components stress(zz) and internal force
stress_xy stress(xy)
stress_yz stress(yz)
stress_zx stress(zx)
left_stretch_xx Element left_stretch(xx) Used for material
left_stretch_yy Stretch left_stretch(yy) tangent stiffness
left_stretch_zz left_stretch(zz) calculations for
left_stretch_xy left_stretch(xy) Lamé material
left_stretch_yz left_stretch(yz) models
left_stretch_zx left_stretch(zx)
lame_state_<model> Material lame_state_ Also for Lamé
<model>_comp State <model>(comp) material model

tangent stiffnesses

Table 4-75. – Element data used in receive_sierra_data. Volumetric stress deter-
mines a geometric stiffness and an internal force. The options to skip these operations are
no_geom_stiff and (include_internal_force=off respectively. Only the Neo-Hookean,
“neo_hookean”, and hyperfoam, “hyperfoam”, Lamé models are supported. And of these,
only hyperfoam has a state. For hyperfoam, comp is either L11, L22, L33, L12, L23, L31, L44,
L55 or L66

197

Exodus Description <key> (for Effect
Label initialize)

variable name)
memb_stress_xx fiber membrane memb_stress(xx) Geometric stiffness
memb_stress_yy stress components memb_stress(yy) and internal force
memb_stress_zz memb_stress(zz)
memb_stress_xy memb_stress(xy)
memb_stress_yz memb_stress(yz)
memb_stress_zx memb_stress(zx)
bottom_stress_xx fiber membrane bottom_stress(xx) Geometric stiffness
bottom_stress_yy stress components bottom_stress(yy) and internal force
bottom_stress_xy bottom_stress(xy)
fibermod fiber modulus fibermodulus Tangent stiffness ∗
ax primary fiber direction fiberdir Tangent stiffness ∗
ay secondary fiber direction fiberdir2 Tangent stiffness ∗
fiberdensity fiber density fiberdens Mass ∗
fiberthickness thickness fiberthickness Tangent stiffness ∗
E1 material modulus N/A Tangent stiffness ∗
E2 material modulus N/A Tangent stiffness ∗
nu12 Poisson ratio N/A Tangent stiffness ∗
G12 material modulus N/A Tangent stiffness ∗
density material density N/A Mass ∗

Table 4-76. – Data Transferred in receive_sierra_data specific to orthotropic_layer mate-
rials. Some of this data is transferred automatically. Other data requires the from_transfer
keyword in the material definition (denoted by an asterisk in the Effect column).

198

stress_xx or stressxx are allowed. The data, typically written from Sierra/SM, may
require special output requests (in the Sierra/SM input file) for proper naming. See the
How To or Verification manual for examples.

Alternatively, Sierra/SD also supports user-defined setup of some input variables using
initialize variable name = <key> in the FILE section, where the appropriate <key> for
each variable (if applicable) is listed in tables 4-74 to 4-76. read variable and variable
type lines may be used to read input variables from a non-default field name. The step
these input variables are read from can be controlled with step = first|last|<int> or
time = first|last|<real>. As with Exodus in general, steps are one-based: step = 2
refers to the second step on the mesh. In the case of time = <real>, the step chosen will
actually be the nearest step with a time greater than or equal to the requested value.

An example for displacements is shown below, where nodal displacements are stored as
“dx”, “dy”, and “dz” on the input geometry file input_mesh.g.

FILE
geometry_file = input_mesh.g

nodal displacement components stored in input_mesh.g...
initialize variable name = displacement(x) # x-component

variable type = node # nodal displacement
read variable = dx # from input "dx"
time = 2.5 # at the nearest step

with time >= 2.5

initialize variable name = displacement(y) # y-component
variable type = node # nodal displacement
read variable = dy # from input "dy"
step = FIRST # at the first step

initialize variable name = displacement(z) # z-component
variable type = node # nodal displacement
read variable = dz # from input "dz"
step = LAST # at the last step

END

Additionally, function and variable type lines may be used to initialize nodal quantities
via an analytic function.

geometry_file = input_mesh.g

FUNCTION my_disp_x
type analytic
expression variable dx_Input = nodal dx
evaluate expression ="0.5 * dx_Input"

199

END

initialize variable name = displacement(x) # x-component of
variable type = node # displacement
function = my_disp_x

Input 4.10. Input displacement based on analytic function

Here the first component of displacement is calculated using an analytic expression that
scales dx from the mesh.

A shorthand notation of the user-defined label mapping is also supported and shown below
for the same example of displacement. For vector fields, ‘x’, ‘y’ and ‘z’ is appended to the
variable name, and for tensor fields, “xx”, “yy”, “zz”, “xy”, “yz” and “zx” is appended. For
tensor fields, the order of off-diagonal indices is irrelevant (“xy” is the same as “yx”).

FILE
geometry_file = input_mesh.g

initialize variable name = displacement # displacement is stored
variable type = node # in nodal fields
read variable = d # named "dx", "dy" and "dz"
step = 23 # at the 23-rd step

END

Coordinate Update The receive_sierra_data method uses Sierra/SM displacement
to update the initial coordinates of the mesh. Mass matrices are computed in the
undeformed configuration, to better ensure conservation of mass in this hand-off. However,
the initial coordinates for Sierra/SD are updated with the transferred displacements.

~x= ~xo+~u

Here xo is the location of the undeformed coordinates. Stiffness matrices, forces, and tied
MPCs are then computed in the updated frame. Tied MPCs can be defined via tied
surfaces or contact.

Compatibility of Elements Between SD and SM See

200

4.25. Statics Solution Case

Parameter Type Default Description

load Integer
Load to apply during
solution case. See
Section 4.29.0.5

Table 4-77. – Statics Solution Case Parameters.

The statics keyword is required if a static solution is needed, i.e. the solution to the
system of equations [K]{u}= {f}. An example Solution section is shown below.

Solution
title "Example of a statics solution"
statics

end

4.26. Superposition Solution Case

Parameter Type Default Description

reduced_file String Ignored?

Table 4-78. – Superposition Solution Case Parameters.

Superposition is currently BETA release.
Enable with the “- -beta” command-line option.

The superposition provides superelement recovery capability. This recovers physical
space solutions from generalized degrees of freedom.

A CB model generates a transformation matrix consisting of a combined set of fixed
interface and constraint modes. See section 4.4. This modal basis may be stored in an
exodus file. A netcdf file containing the reduced order model is also created at this time.
Subsequently, this reduced model is inserted into a residual model for superelement
analysis, say a transient analysis. That analysis outputs the standard exodus results, and
may also generate output on the netcdf file. These data may be post-process using linear
superposition to determine output quantities on the original interior degrees of freedom of
the superelement. This is illustrated in Figure 4-21.

201

basis−out−superposition.exo

basis−out.exo

residual−out.exo

rom−out.ncf

rom.ncf

residual.exobasis.exo

CB Reduction Residual Solution Superposition Solution

Figure 4-21. – Superposition Data Flow Diagram.

The superposition method requires a single argument, the file name of the reduced order
model containing the output results. In addition, the geometry_file specified in the
FILE section must contain the modal basis for the Craig-Bampton reduction. See the
example in input 4.11.

solution
case superposition

superposition
reduced_file=rom-out.ncf

end

file
geometry_file basis-out.exo

end

Input 4.11. Superposition Example. Output will be to
“basis-out-superposition.exo”

Limitations The superposition method is under development and contains the following
limitations.

• Solutions are supported in serial at this time.

• Only displacement, velocity and acceleration may be output.

• Superposition is tested for Eigen and Transient solutions. There is no support for
frequency domain solutions at this time.

• Data recovery is possible for a single superelement in each run.

202

4.27. Tangent Solution Case

Parameter Type Default Description

Table 4-79. – Tangent Solution Case Parameters.

The tangent solution step requires a multicase solution (see paragraph 4.2). It forces an
update of the tangent stiffness matrix. It is typically used following a nonlinear solution
step to ensure that the following step begins using the tangent stiffness matrices computed
from the previous result. However, it may also be used following a linear solution step, in
which case the stiffness matrix is computed again based on the current value of
displacement.

During tangent the stiffness is computed again based on element configuration in the
deformed state. Tangent also adds any stress stiffening effects from the preceding load
case. Stress resultants from the preload step are not added to stress resultants of
subsequent cases after the tangent solution, but do contribute to increasing the effective
stiffness computed in the tangent stiffness. For example, the stress stiffening that occurs
from tension of a guitar string would be successfully captured using the tangent solution
case. As another example the stiffness of a warped plate may be significantly different from
the stiffness of a flat plate, tangent will take into account this change in stiffness.

The tangent stiffness matrix is assembled at the subdomain level from computations at the
element level. It represents the partial derivative of the force with respect to the
displacement, i.e.

Ktangent = ∂f

∂u
(4.29)

The tangent stiffness matrix replaces the linear stiffness matrix in the eigenvalue problem.
This permits computation of modal response following a preload.

203

4.28. TranShock Solution Case

Parameter Type Default Description

time_step Real Time step size. See
Section 4.29.0.1

nsteps Integer Number of time steps to
take. See Section 4.29.0.2

start_time Real 0.0 Solution case start time.
See Section 4.29.0.3

nskip Integer 1 Results output frequency.
See Section 4.29.0.4

rho Real 1 Select time integrator. See
Section 4.29.1.1

load Integer
Load to apply during
solution case. See
Section 4.29.0.5

write_files
all| none|
output|
history

all
Controls which result files
are written during this
solution.

SRS_damp Real 0.03
Damping coefficient used
for the shock response
spectra calculation

Table 4-80. – TranShock Solution Case Parameters.

The transhock solution method is used to perform a direct implicit transient analysis
followed by computation of the shock response spectra for the degrees of freedom in a
specified node set. The options for configuring a transient solution case described in
Section 4.29 are all applicable in the transhock solution case too. An example of a
transhock solution case and frequency block are shown in input 4.12. Damping for the
implicit transient portion of the simulation is defined in Section 5.8. The srs_damp is not
used in the modal transient portion of the simulation.

A frequency block must also be included in the input deck for transhock solution cases
to define the frequencies and nodesets for computing the shock response spectra (see
Section 8.5). The frequencies for computing the shock response spectra are defined by
setting freq_step, freq_min, and freq_max. They are identified in the frequency section
along with an application region (see Section 8.5). The range of the computed frequency
spectra is controlled by freq_min and freq_max, while freq_step controls the resolution.

204

The accuracy of the computed spectra is independent of the magnitude of freq_step.
This parameter controls the output resolution. Examples are presented in inputs 4.7, 4.8
and 4.12.

The shock spectrum procedure will compute acceleration results. The options specified in
the outputs and echo blocks are used in the transient portion of the analysis, but are
ignored for the post-processing of the transient results into shock spectra. Thus, if
displacement, velocity, and/or acceleration is selected in the outputs and/or echo sections
for a shock spectra analysis, the results echoed to the output listing or the Exodus output
file will be time history results as requested, but the shock spectra results will be for
acceleration response for the nodes in the specified node set. The calculated shock spectra
are written to the frequency file (*.frq); they are not output to the Exodus results file.

Solution
transhock

time_step .00005
nsteps 500
nskip 1
srs_damp .03

end

Frequency
freq_min 100.
freq_max 10000.
freq_step 100.
nodeset 3
acceleration

end

Input 4.12. Transhock Example Input

205

4.29. Transient Solution Case

Parameter Type Default Description

time_step Real Time step size. See
Section 4.29.0.1

nsteps Integer Number of time steps to
take. See Section 4.29.0.2

start_time Real 0.0 Solution case start time.
See Section 4.29.0.3

nskip Integer 1 Results output frequency.
See Section 4.29.0.4

rho Real 1 Select time integrator. See
Section 4.29.1.1

load Integer
Load to apply during
solution case. See
Section 4.29.0.5

write_files
all| none|
output|
history

all
Controls which result files
are written during this
solution.

PredictorCor-
rector

Integer -1 predictor-corrector
implementation

ConstraintCor-
rectionFre-
quency

Integer 1 time-step frequency for
constraint correction

ConstraintEr-
rorDiagnostics yes/no no prints constraint errors

flush integer 50

Defines how often results
are written to the exodus
results file. See
Section 3.4.1

nUpdateCon-
straints

Integer 0 Frequency to update
constraints

Table 4-81. – Transient Solution Case Parameters.

The transient solution method is used to perform a direct implicit transient analysis.

4.29.0.1. Time_step Option

206

The time_step defines the time step size. The time step size is constant for a time period.
Multiple time periods can be given as shown in example 4.29.0.6.

4.29.0.2. Nsteps Option
The nsteps defines the number of time steps to take. As shown in example 4.29.0.6,
multiple time periods can be defined with different numbers of steps.

4.29.0.3. Start_time Option
The start_time sets the initial time of a transient analysis. By default, a transient case
begins where a previous transient solution case ended, or the time transferred from a
receive_sierra_data or other preload solution case. Otherwise, the default start time is
0.0. To set the start time in the input deck specify start_time.

4.29.0.4. Nskip Option
The nskip controls how many integration steps to take between outputting results. It
defaults to 1, which is equivalent to outputting all time steps. Because transient analysis
often takes little computational time per step, the overall runtime can be significantly
reduced by choosing not to output the results at every step, i.e., setting nskip greater than
1. The nskip in the solution section can be overridden for history (Section 8.4) and
linesample (Section 8.6) output by specifying nskip in those sections.

4.29.0.5. Load Option
The load defines the name of the “load” block to apply during the solution case. See
Section 7.3.1 for details.

4.29.0.6. Defining Multiple time Periods
We note that multiple time step values, along with the corresponding number of steps, can
be specified for transient analysis. This can be useful for separating the simulation into a
section of tiny time steps followed by a section of larger time steps, or vice versa. The
following provides an example of the use of multiple time steps.

solution
time_step 1.0e-5 1.0e-3
nsteps 100 500
nskip 10 1

end

In this case, the user requested 100 time steps of ∆t= 10−5, followed by 500 time steps
with ∆t= 10−3. There is no practical limit on the number of such regions that may be
specified.

207

4.29.0.7. PredictorCorrector Option
PredictorCorrector indicates whether predictor-corrector implementation is to be used
(see theory manual). It defaults to 1. If it is 1, predictor-corrector is always used, while 0
indicates that it is never used. ConstraintCorrectionFrequency and
ConstraintErrorDiagnostics are related to the constraint errors arising in the
predictor-corrector implementation, with the first controlling how often the correction is
applied, while the second can be used to examine the evolution of constraint errors of
displacement, velocity and acceleration.

4.29.1. nUpdateConstraints Option

nUpdateConstraints is currently BETA release.
Enable with the “- -beta” command-line option.
nUpdateConstraints defines the frequency to update constraints (e.g. MPCs and contact).
When it is undefined or set equal to 0, the constraints will never be updated. A value of 1
results in the constraints being updated every time-step. In addition to re-building the
constraints, the nodal coordinates will also be updated at the corresponding time-steps
based on the interpolation of any existing displacements on the mesh (if applicable).

The name of the displacement nodal variables can be defined by the initialize variable
name, read variable, and variable type options in the FILE section, as shown in
section 4.24.

This option is related to the nodesets_with_disp option (section 3.3), which enables
specifying displacements on a subset of all nodes via nodeset output. However, nodeset
displacements do not currently support user-defined variable names as with nodal
displacements.

4.29.1.1. Numerical damping
Two time integrator schemes are available for direct time integration. The method and the
configuration of the integrator are selected using the keyword rho. If this keyword is not
found, the time integrator defaults to a standard Newmark beta17,27 integration scheme.
With rho the Generalized Alpha method2116 is used, and the value of the numerical
damping is controlled by rho.

Important
Due to the inexactness of linear solvers, the Newmark beta integrator
is conditionally unstable. Without damping, a solution may gradually
diverge. Also, see subsection Linear transient analysis section Solution
Procedures of the Theory Manual. Either proportional damping or
numerical damping is strongly recommended in all cases.

208

The option rho defines the numerical damping of the Generalized Alpha method. rho
varies from 0 (maximal damping case) to 1 (minimal damping case). If rho is not
specified in the input deck, the integrator defaults to the Newmark beta
method. Otherwise, the code uses the value of rho given by the user to configure the
Generalized Alpha method. Therefore, there is no value default for rho, as shown in the
table above, since if it is not specified the code uses the Newmark beta method instead. If
rho is specified to be greater than 1 or negative an error message is printed. rho
determines Newmark beta, αf , and αm of the Generalized Alpha method. More detailed
information on the implementation, and references can be found in the description of the
method in the Sierra/SD Theory Manual.

The following conditions suffice to achieve second order accuracy and unconditional
stability:

αm < αf <= 1
2

γn = 1
2 −αm+αf

βn ≥
1
4 + 1

2(αf −αm)

The parameters are determined to satisfy the conditions. Specifically,

αf = ρ/(1 +ρ)
αm = (2ρ−1)/(1 +ρ)
βn = (1−αm+αf) · (1−αm+αf)/4
γn = 1/2−αm+αf

We note some special cases of interest. If ρ= 0, we have that αf = 0 and αm =−1. This is
the maximum damping case. If ρ= 1, we have that αf = αm = 1

2 , which yields βn = 1
4 , and

γn = 1
2 . This is similar to the classical undamped Newmark beta method, although we note

that it is a different algorithm since αf = αm = 1
2 implies some lagging in the time-stepping

procedure. The classical undamped Newmark beta method has αf = αm = 0.

Unlike proportional damping, there is no direct relation between rho and an equivalent
modal damping term. A value of rho=0.9 is recommended for most analyses. The
Generalized Alpha integrator imparts numerical damping to the solution that most
strongly affects high frequency content. Users must check that the damping in the
frequency range of interest is physical. For example with a time step size of 1e−5,
damping has the most effect at frequencies above the Nyquist frequency .5e+ 5.

4.29.1.2. Initial Acceleration
Determining the initial acceleration is necessary28 for quadratic convergence. If force,
velocity or displacement is specified, an initial solve may be required to determine a
consistent acceleration. Remember that determination of the displacement at step n+ 1

209

depends on values at the previous step. Specifically, the acceleration at the previous step is
given by the solution to the equation,

An =M−1(Fn+Kdn+Cvn)

where M , K, and C are the corresponding mass, stiffness and damping matrices.

If this mass solve is not performed, it is possible to introduce a spike in acceleration which
can oscillate through time. Initialization can be a somewhat tricky process. An example
set of use cases is provided in Appendix 7.5. By default, GDSW is used. Some
combinations of MPCs can lead to a singular mass matrix that will cause solver errors. For
these cases the initial mass solve is deactivated with the following command in the
parameters block (see Section 3.3),

Parameters
DoInitialMassSolve = false

end

4.30. TSR_preload Solution Case

Parameter Type Default Description

linedata_only True|False False

Indicates that no system
matrices should be
computed, but the linedata
specified in the linesample
file should be computed for
verification of data transfer.

Table 4-82. – TSR_preload Solution Case Parameters.

The tsr_preload solution method reads an Exodus file with a previously computed
Thermal Structural Response (TSR) into Sierra/SD for a subsequent statics or transient
dynamics analysis. This is not a fully coupled calculation. Stress results are read from the
geometry file, an equivalent internal force is computed, and that internal force is combined
with the applied force throughout the transient run. If temperature data is also included in
the file, it will be read and used to compute temperature dependent material properties. A
tsr_preload requires a multicase solution, and it must be followed by a transient
dynamics or statics solution (see paragraphs 4.2 and 4.29 respectively).

Note that since the stresses are converted into a force, and since there is no immediate
deformation in transient dynamics, the elastic stresses output by Sierra/SD will be small
initially, i.e. they will not contain a contribution from the thermal stress. However, at large

210

times, the deformation from the internal force will result in an elastic stress opposite to
that of the thermal stress. The linesample method 8.6 recovers the input thermal stress
as an output quantity (in either MATLAB or Exodus format).

The tsr_preload solution method is considered to be a temporary solution to a more
complicated problem. In the future, TSR analysis will involve coupling to other mechanics
codes. In many cases a thermal load (Section 7.3.8), may provide equivalent capability.

Data in the Exodus file from which TSR data is read must strictly match the following
criteria. There must be one time step in the result. That time step must have a number of
different element fields defined. These correspond to the six stress values of the stress
tensor and the number of stress tensors defined per element must correspond exactly to the
number of integration points for that element. For instance, a hex20 element requires
exactly 27 stress tensor values per element. An error is produced if the number of data
points read in does not match the number of integration points for that element. For
instance, a fully integrated hex8 will produce an error if reading in Gauss point data
produced by a fully integrated hex20 element. Shell and beam type elements are not
supported in tsr_preload.

The labels for the stresses must be as shown in the table below where SigXX is
interchangeable with SigMA_XX or STRESS_XX. Both sequential and ijk62 numbering are
supported for integration point data. For sequential numbering, replace %d with an integer
representing the integration point value (0 to 26). Do not zero pad. For ijk numbering,62

labeling goes as SigXX_Hex20_GP%d where %d is replaced with the ijk numbering scheme and
_Hex20 is replaced with the element type.

Name Definition
SigXX_%d σxx, the xx component of stress
SigYY_%d σyy, the yy component of stress
SigZZ_%d σzz, the zz component of stress
SigYZ_%d σyz, the yz component of stress
SigXZ_%d σxz, the xz component of stress
SigXY_%d σxy, the xy component of stress

Support for user-defined stress labels (and reading from an arbitrary input step) is
available using the initialize variable name interface shown in section 4.24.1. Note
that the labels will still need to follow the previously-outlined naming convention for
integration-point data, i.e. the user-defined stress label defines the root of the stress
component name.

The following is an example solution section for a TSR preload followed by transient
dynamics.

Solution
title ’Pure bending from initial stress’
case TSR

211

tsr_preload
load 1

case bend
transient
time_step 1.e-6
start_time 1.0e-3
nsteps 3
nskip 1
load 2

end

If executed on a file with geometry_file = example.exo, this will produce two output
files, example-tsr.exo and example-bend.exo. The first of these has little useful
information. The second contains the displacements (or other variables) from the transient
analysis.

4.30.0.1. Line Sample
One additional feature for thermal structural response is the ability to do line sampling 8.6
on the original Exodus file containing the element stresses. This is useful for debugging
and verification. It allows the stresses along lines within the structure to be examined.
Sampling occurs for data stored on integration points using the variables names described
above. Line sample is used for energy deposition (see the Two Element Exponential Decay
Variation Hex20 problem43). Energy deposition is interchangeable with supplying an
applied temperature.

In tsr_preload, the input Exodus file is required to contain at least one of the following
fields: stress, temperature or energy deposition. Any field that is not found in the input
Exodus file is reported as a zero field in the output line sample output file.

4.31. Residual Vectors Solution Case

Parameter Type Default Description

node_list_file File Unknown

Table 4-83. – Residual Vectors Solution Case Parameters.

Residual Vectors is currently BETA release.
Enable with the “- -beta” command-line option.

The residual_vectors solution method Modal truncation augmentation (MTA)18

provides a method to represent the modes not retained in the eigendecomposition. It is

212

particularly useful in component mode synthesis approaches where multiple models are
joined together. In NASTRAN, MTA vectors are referred to as ‘residual vectors’. The
theory of MTA18 is established. We use the following terminology:
N Number of degrees of freedom
nev Number of retained eigenvalues/eigenvectors from the eigen solution
nf Number of applied forces and/or moments
MMM Mass matrix of size N×N
KKK Stiffness matrix of size N×N
Φ Matrix with eigenvectors as columns, size N×(nev)
Ω2 Diagonal matrix of eigenvalues, size (nev)×(nev)
RRR0 Applied spatial load vector, size N×(nf)
RRRs Modally represented spatial load vector, size N×(nf)
RRRt Force truncation vector, size N×(nf)
XXX Static displacements due to applied loads, size N×(nf)
ω̄2 Diagonal matrix of reduced eigenvalues, size (nf)×(nf)
Q̄QQ Matrix of reduced eigenvectors, size (nf)×(nf)
PPP Matrix of modal truncation (residual) vectors, size N×(nf)

The algorithm for computing MTA vectors is:

1. Solve the generalized eigenvalue problem

KKKΦ =MMMΦΩ2

for nev eigenvalues and eigenvectors. This is done by first specifying eigen in a
multicase solution procedure.

2. Compute the force truncation vector

RRRt =RRR0−RRRs =RRR0−MMMΦΦTRRR0.

3. Compute the static displacements XXX due to the force truncation vector RRRt by solving
KKKXXX =RRRt.

4. If rigid body modes are present, orthogonalize XXX to them. The optional input nrbms
allows the user to specify the number of rigid body modes present.

5. Form the reduced matrices nf ×nf ,

K̄KK =XXXTKKKXXX, M̄MM =XXXTMMMXXX.

6. Solve the reduced generalized eigenvalue problem K̄KKQ̄QQ= M̄MMQ̄QQω̄2

7. Form the modal truncation (residual) vectors: PPP =XXXQ̄QQ

8. Construct the pseudo modal set: Φ̃ = [Φ|PPP].

In Sierra-SD, the multi-case solution strategy is:

213

1. Solve the eigenvalue problem

2. For each column of RRR0, solve a statics problem

3. Solve a residual_vectors problem to form the pseudo modal set

An example solution block is given here for a case with six rigid body modes.

Solution
title ’Sample MTA solution procedure’
case ’eigen’

eigen
nmodes=30
shift=-1000. // needed for floating

solver=gdsw
case ’residual_vectors’

residual_vectors
node_list_file node1

end

4.32. GeometricRigidBodyModes Solution Case

Parameter Type Default Description

Table 4-84. – GeometricRigidBodyModes Solution Case Parameters.

Nominal rigid body modes may be determined from the coordinates. No attempt is made
to account for boundary conditions. This solution method requires that the GDSW linear
solver be used.

The intent of the examples is to first introduce rigid modes, next use the modes to solve an
eigenvalue problem, and then demonstrate the Modal Transient capability 4.19. The third
example uses the modes in a modal transient simulation to deflate out the rotations. This
section depends on Section 7.3.19.

The geometry rigid body mode capability will always generate six modes and these modes
are explicitly ordered +X, +Y, +Z, +RX, +RY, +RZ.

Rigid body modes are requested in the Solution block.

Solution
geometric_rigid_body_modes
end
Parameters
num_rigid_mode 6

214

end

The number of rigid body modes must also be specified. Only values of 1,6 or 7 are
supported.

Rigid body modes can be incorporated into the modes computed in a modal analysis, and
then used for other purposes. The resulting mode shapes are more accurate. Also the rigid
body modes themselves are ordered in a way that makes sense to humans. Without the
GRBM case, the displacements and rotations are mixed together.

Solution
case rigid
geometric_rigid_body_modes
case flexible
eigen
nmodes 10
shift -1e6
end
Parameters
num_rigid_mode 6
end

Rigid body modes are the 6 lowest frequency eigenvectors. In this case 4 more modes are
computed, for a total of 10.

In this example a modal transient simulation uses the geometric rigid body modes to
deflate out the (infinitesimal) rotation, while retaining the translational rigid body modes.
This is equivalent to use of the FilterRbmLoad for direct transient solutions (though
accomplished differently).

Solution
case out

geometric_rigid_body_modes
case vibration

eigen
nmodes 10

case filter
modalfiltercase
modalfilter rotation

case transient
modaltransient
time_step 1.e-5
nsteps 62
load 42

end
Parameters

215

num_rigid_mode 6
end
modalfilter rotation

add all
remove 4:6

end

4.33. Waterline Solution Case

Parameter Type Default Description

max_iterations Integer 100 Maximum number of
solution iterations

toler-
ance_force Real 1.0e-6 Target force balance

accuracy

point_a Real(3) Coordinates of point on
estimated water surface

point_b Real(3) Coordinates of point on
estimated water surface

point_c Real(3) Coordinates of point on
estimated water surface

VizOption none|Ensight none
Whether Ensight writes a
file for visualizing the
waterline plane

Table 4-85. – Waterline Solution Case Parameters.

It can be advantageous to determine the waterline of a ship prior to commencing more
complex analysis. The waterline capability solves the nonlinear geometric equations of
equilibrium for a rigid ship in water. An example is shown in input 4.13.

Solution
case ’waterline’

waterline
max_iterations 100
tolerance_force 1.0e-6 // absolute tolerance on force convergence
point_a 0 0 0 // coords of point ’A’ on estimated water surface
point_b 1 0 0 // coords of point ’B’ on estimated water surface
point_c 1 1 0 // coords of point ’C’ on estimated water surface

load 1

216

case ’transient’
...

end

LOAD 1
sideset 1 // wetted sideset

pressure = 1
function = 1 // this defines rho g h

body
gravity = 0 0 9.8

end

// this assumes rho=1000, g=9.8
Function 1
type Linear
data 0.0 0.0
data 1.0e6 9.8e9
end

Input 4.13. Waterline Example

The arguments point_a, point_b and point_c indicate the Cartesian coordinates of three
points A, B, C on the estimated water surface. These three points define a plane, which
serves as the initial guess of the waterline. The waterline normal is determined using the
right-hand rule with these points, as shown in Figure 4-22. The Newton’s method
implementation then uses this plane as the initial guess, and begins iterations towards force
and moment equilibrium. On completion, we write out the coordinates of three points on
the final (converged) waterline surface, along with the Cartesian coordinate system defined
by these points. This output appears in the result file in text format. A grepos script for
moving the body may also be written.

The optimization is configured as follows.

max_iterations sets the maximum number of iterations.

tolerance_force is a normalized force residual. The norm is computed from the residual
vector,

Fresidual = [Fz/W,Mθ1/(LW), Mθ2/(LW)]
where W =Mg is the total weight of the ship, and L is a characteristic length of the
model.

VizOption may be none or Ensight to generate a visualization script.

217

Figure 4-22. – Waterline Coordinate Definition. The plane of the surface is defined by three
points: A,B, and C. The θ1 rotation is about the line from A to B, while the normal is defined
using the right-hand rule.

In addition to the entries in the Solution section of the input, this method requires two
load entries and a function. The load entries define the sideset for the wetted surface and
the gravity load. 1 The function defines the pressure as a function of depth. In the
example of input 4.13, the argument to the function is the depth, h. The function returns
P = ρgh.

The waterline iteration may output nodal data during the iteration. Select force to output
the buoyancy force. Select npressure to output the nodal pressure. See the Outputs
section, 8, for details.

4.33.0.1. Limitations There are a number of limitations to this method.

gradient-based optimization: These powerful algorithms are based on nonlinear
gradient-based optimization and have subtle limitations. Limitations are listed below.

1. Singular tangent matrices are generated in various conditions, which cause the
solution to terminate. A common condition causing a singular tangent matrix is

1Gravity is specified using the standard load keywords of a body load with a gravity vector. However, for
the waterline solution, the magnitude of the gravity vector is relevant. The gravity direction is always
directed opposite the normal to the surface for this solution type.

218

a body completely submerged in a constant-density fluid. For simplicity,
consider an unrotated cube 2 of edge length S. The net force on the cube is,

Fnet = (AbottomPbottom−AtopPtop)−mg (4.30)
= ρfgS

2(hbottom−htop)−mg (4.31)
= ρfgS

3−ρsgS3 (4.32)

where ρf and ρs are the densities of the fluid and solid respectively.
Significantly, the net force does not depend on the average depth. Thus,

Kt = ∂Fnet
∂z

= 0.

Kt = 0 for a ship that is completely out of the water too.

Real seawater is not constant density. An optimal solution may be found in this
case. However, because the pressure is usually expressed as a piecewise linear
function, the same problem occurs. Use of a runtime function may allow
computation of higher-order derivatives, but this has not been evaluated.

Figure 4-23 plots net force versus depth for a body. Only the partially
submerged region has a nonzero tangent matrix that can be determined by a
gradient-based optimization scheme.

Depth

N
et

 F
o

rc
e

Fully UnSubmerged

Fully Submerged

Figure 4-23. – Net Force vs depth for a Rigid Body. Only the unshaded region, where the
body is partially submerged, has a non-singular tangent matrix.

2. Gradient-based solution methods often have trouble with local minima. These
can occur in the case of unstable systems, such as a light, tall cylinder floating

2The arithmetic is easier for a cube, but the arguments can be shown to be completely valid for any rigid
body.

219

on a dense fluid. A local minimum occurs for the cylinder standing vertically. A
global minimum is achieved when the cylinder is perturbed and falls to the side.

3. Gradients may also go to zero for symmetry reasons. A perfect cylinder floating
on the water has no sensitivity to roll.

sideset orientation: The wetted surface defines the pressure surface. It does not need to
be closed. However, there can be no contribution to the net force from portions of the
model that are submerged, but not part of the sideset.

One and only one sideset defines the wetted surface. Its outward direction should
point into the water. There is no check for a reversal of the normal vectors on the
sideset. This must be evaluated by the analyst.

Z-orientation Current design requires that the initial configuration has gravity
approximately aligned with the global Z coordinate.

4.34. Gap Removal Solution Case

Parameter Type Default Description

ignore_gap_
inversion

true|false false suppress fatal error, gap
output behavior if true

Table 4-86. – Gap Removal Solution Case Parameters.

If two meshes are tied using either tied data or contact definition, then along the
interface opposite elements may initially overlap of leave gaps. Gap removal, which is done
by default, attempts to remove these gaps and overlaps. Gap removal is the same as initial
overlap removal.

The gap_removal solution case is used to debug contact setup prior to submitting a full
run. The gap_removal solution case runs quickly and uses low memory. This solution
method enables visualization of the constraints created and the gap removed from tied
data 9.1 and contact definition 9.2 blocks. The gap_removal solution method reads in
the mesh, applies the contact search and gap removal algorithm and writes out the output
mesh with gap removed. An example input is given below.

solution
gap_removal

end

tied data
surface 1,2
name "tied_1-2"

220

search tolerance 1.0e-3
end

Removal of contact gaps is essential to maintaining rigid body invariance. This is
illustrated in Appendix 9.3. However, the removal of gaps in tied surfaces can occasionally
result in distorted elements which may make it difficult to impossible for the solver to
converge. Thus, it can be advantageous to investigate the results of gap removal before
committing to a full and expensive solution case.

Gap removal output will include two element variables. The variable
elementInversionFlag is set to one on any inverted element. The variable
elementQuality gives a non-dimensional element quality metric (one is ideal higher is
worse) for the deformed configuration of every element. The same quality metric is used as
described in Section 8.1.12.

If gap removal inverts any element the file name extension “-gap” will be appended to the
output exodus file and a fatal error will be given. One of the parameters described in
Section 3.3 influences the Gap Removal solution case. The parameter is
ignore_gap_inversion. It is false by default. Set it to true to suppress both the fatal
error and the “-gap” output behavior.

Gap removal for lofted surfaces is discussed in Section 9.3.

In addition to the element shape, information diagnostics regarding the contact constraints
are available. The rslt file will list basic information on the number of constraints found.
Detailed visual information on constraint locations is obtained by requesting
constraint_info in the outputs block as described in Section 8.1.50. Furthermore,
adding MPC to the echo block prints every contact created MPC as described in Section
8.8.2.

Coupled Electro-Mechanical Analysis Piezoelectricity is the production of electrical
charges on a surface by the imposition of mechanical stress. Sierra/SD supports coupled
electro-mechanical physics in order to model piezoelectric materials subjected to electrical
and mechanical forces. This support includes static, transient, eigen, and direct frequency
response solution methods, piezoelectric and dielectric material models (5.5, 5.6), and
voltage measurement based inverse methods such as material and source identification.
Electrical boundary conditions such as charge-based Neumann (7.3.12) and voltage-based
Dirichlet(7.1.2, 7.1.3) boundary conditions are also supported.42

4.35. Inverse Problems

Inverse problems optimize parameters to reproduce experimental results. Inverse methods
include transient and direct frequency response load identification, direct frequency
response material identification, and material identification from eigenvalues. The methods
are based on solving optimization problems, with the goal to minimize the norm of the
difference between measured and predicted data. Inverse methods for identifying an

221

unknown material or an unknown load require solution block input. Additional input
blocks are also required. The reader is directed to the Inverse Methods User’s Manual52 for
further details on solving inverse problems in Sierra/SD. Input 4.14 illustrates a partial
input for a “directfrf-inverse” material identification problem. Highlighted portions of the
input are outlined below.

Sierra/SD uses the Rapid Optimization Library (ROL) as an optimization engine.
Portions of the ROL documentation can be found on the Trilinos website.3

solution
directfrf-inverse

end
optimization

optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = secant
opt_tolerance = 1e-10

end
inverse-problem

design_variable = material
data_truth_table = truth_table.txt
real_data_file = data.txt
imaginary_data_file = data_im.txt

end
block 1

inverse_material_type=homogeneous
material 1

end
block 2

inverse_material_type=known
material 2

end
material 1

isotropic
density 10
G 1
K 1

end
material 2

isotropic
density 1
G 2
K 2

3 https://trilinos.org/packages/rol

222

end

Input 4.14. Sample “directfrf-inverse” input for material identification.
Portions of the input that are specific to inverse methods are emphasized.

223

5. Materials

The material section has a (unique) material identifier (an integer or a string name). The
material identifier is used in assigning material properties to element blocks. Material
types and their parameters are summarized in Table 5-87.

Table 5-87. – Material Stiffness Parameters.

material type parameters
isotropic any two of K, G, E or nu
orthotropic nine Cij entries
orthotropic_prop E1, E2, E3, nu23, nu13, nu12, G23, G13, G12
anisotropic 21 Cij entries

For example,

Material steel
isotropic
E 3e7
nu .3

End

A materials may be isotropic, orthotropic, orthotropic_prop, anisotropic, or
isotropic_viscoelastic.

The Joint2G element 6.21 has material models for joints including an elastic-plastic
model.

5.1. Elastic

Elastic materials may be isotropic section 5.1.1, orthotropic section 5.1.2, or anisotropic
section 5.1.3. Some material models from the Lamé library are available section 5.1.4.

5.1.1. Isotropic

Isotropic materials require specification of two of the following parameters. They can be
defined directly as parameter = <real>, as functions of temperature (Section 5.4.6), or as
spatially dependent properties (Section 5.4.7.)

224

Parameter Description
E Young’s Modulus
nu Poisson’s Ratio
G Shear Modulus
K Bulk Modulus

Isotropic materials are the default, and the keyword isotropic is not required. Of the four
parameters, exactly two must be supplied. They are related by

E = 3K(1−2ν), G= 3KE
9K−E .

Internally, Sierra/SD stores the values of K and G.

5.1.2. Orthotropic

Orthotropic material entry is similar to the anisotropic case.

A difference is that the keyword orthotropic replaces anisotropic, and only 9 Cij entries
are specified. These entries correspond to C11, C12, C13, C22, C23, C33, C44, C55 and C66.
Like the anisotropic material definition, we follow the stress/strain ordering xx, yy, zz, zy,
zx, xy.

Alternatively, an orthotropic material may be specified using orthotropic_prop and the
material parameters E1, E2, E3, nu23, nu13, nu12, G23, G13, and G12 as shown in
the following example. As with isotropic materials, temperature-dependent parameters
may be defined via a function as parameter = function <string> (see Section 5.4.6).
Note that all elastic materials must satisfy requirements that the elasticity matrix is
positive definite.

Material honeycomb
orthotropic_prop
E1 = 508.7
E2 = 7641.0
E3 = 14750.0
nu12 = .2
nu23 = .0825
nu13 = .1
G12 = 115
G23 = 2320.
G13 = 450.
density=0.5

End

225

A single orthotropic layer may be specified using orthotropic_layer. An orthotropic
layer must specify 4 of the above parameters (E1, E2, nu12, G12).

The receive_sierra_data section 4.24 solution case transfers material parameters by file,
also using the syntax parameter = from_transfer. Here is an example:

Material 13
orthotropic_layer
E1 = 508.7
E2 = 7641.0
nu12 = 1.293
G12 = 115
density=0.5

End

If sensitivity analysis is being performed (see Section 3.6), one indicates the parameters for
analysis by following these parameters with the +/- characters. In the first entry method, a
sensitivity analysis must be performed on all 9 parameters. In the second, each individual
parameter must be requested individually. The concept is that the sensitivity is performed
with respect to the labeled parameters, i.e. either the set of Cij parameters, or each
individually labeled E1 term.

5.1.3. Anisotropic

Anisotropic materials require specification of a 21 element Cij matrix corresponding to the
upper triangle of the 6×6 stiffness matrix. Data is input in the order C11, C12, C13, C14,
C15, C16, C22, etc. The Cij must be preceded by the keyword Cij. The keyword
anisotropic is also required. Materials are specified according to the stress/strain ordering
xx, yy, zz, zy, zx, xy.

This is generally consistent with published Materials Science data. However, NASTRAN
and Abaqus use a different convention. An input deck illustrating anisotropic material
input is provided in Section 10.2.

If an element block uses a coordinate system the anisotropic material is defined in the r̂, ŝ,
t̂ local frame 8.1.6. If an element block does not use a coordinate system the anisotropic
material is defined in the X, Y, Zframe. The frame used by each element may be visualized
by requesting material_direction_1, material_direction_2, and
material_direction_3 in the outputs block.

For anisotropic (and orthotropic) materials, the check to make sure material properties are
acceptable is skipped. A message is printed notifying the user that this check is skipped.

226

5.1.4. Lamé Material

Lamé material is currently BETA release.
Enable with the “- -beta” command-line option.

Sierra/SD provides a limited capability to use linearized versions of the non-linear Lamé
material models in Sierra/SD. This can be used in conjunction with the capability to
hand-off a nonlinear preload to a linear Sierra/SD analysis. This hand-off is
accomplished by reading in the element variables stress, left_stretch, and Lamé state
(e.g. lame_state_hyperfoam) at the last time-step of your Exodus input file (see
section 4.24). One example where this would be useful is computing the tangent stiffness of
a compressed foam.

Lamé materials are defined in a material section. As in input 5.1. A Lamé material
definition begins with begin-lame-material and ends with end-lame-material.
Currently, only Neo-Hookean and Hyperfoam materials are supported.

Material 1
begin-lame-material

begin parameters for model Hyperfoam
bulk modulus = 1.e6
Poissons ratio = 0.1
n = 3
shear = 3.74e6, -3.17e6, 1.18e4
alpha = 2.536, 2.090, -8.807
Poisson = 0.5630, 0.5507 0.3662

end
end-lame-material
density = 5.0

End

Input 5.1. Example material section for a Lamé Hyperfoam material model.

Note: unlike the rest of a Sierra/SD input file, the material model definition (emphasized
text in input 5.1) must strictly follow syntax rules including newlines. Details of the
allowed syntax for each material model are given below. Lamé Neo-Hookean model
Acceptable syntax for Neo-Hookean models is given below.

227

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN
#
Elastic constants
#
YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> ν
SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> λ
TWO MU = <real> 2µ

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

A detailed discussion of the theory of the Neo-Hookean model can be found in the Sierra
Solid Mechanics User Manual.60

Lamé Hyperfoam Model Acceptable syntax for Hyperfoam models is given below.

BEGIN PARAMETERS FOR MODEL HYPERFOAM
#
Elastic constants
#
YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> ν
SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> λ
TWO MU = <real> 2µ
#
Strain energy density
#
N = <integer> N
SHEAR = <real_list> µi
ALPHA = <real_list> αi
POISSON = <real_list> νi

END [PARAMETERS FOR HYPERFOAM]

As with Neo-Hookean models, a detailed discussion of the theory of the Hyperfoam model
can be found in the Sierra Solid Mechanics User Manual.60

5.2. Acoustic

Linear acoustic materials require the specification of the fluid density, and the linear speed
of sound. In addition, the keyword acoustic must be in the material block.

228

Material air
acoustic
density 1.293
c0 332.0
cavitating
pvapor 0.0

End

Nonlinearity can be activated by the keyword nonlinear. Nonlinear acoustic materials
require one additional parameter, B_over_A, which is a measure of fluid nonlinearity. For
air, B_over_A= 0.4. Tables of B_over_A for various fluids can be found in.26

Cavitation can be activated by the keyword cavitating. This requires an additional
parameter, pvapor, which is the vapor pressure with a default value equal to 0. Cavitating
elements also require the definition of vectors for hydrostatic_gravity and
free_surface_point in the block section as shown in input 5.2. hydrostatic_gravity
and free_surface_point are vectors used to compute the external pressure at the block.

BLOCK 1
material 1
hydrostatic_gravity = 0 0 -32.2
free_surface_point = 0 0 34.0

End

Input 5.2. This is an example of a block section for a cavitating material.

For computational acoustics see Section 3.4.4.

5.3. Linear Viscoelastic

Linear viscoelastic materials require the specification of the density, and the limiting moduli
E_g, E_inf, G_g, G_inf. The subscript ’g’ refers to the glassy modulus, which occurs at
t= 0, or ω =∞. The subscript ’inf’ refers to the rubbery modulus, which occurs at t=∞,
or ω = 0. In addition the Prony series for the viscoelastic materials have to be specified
using keywords K_coeff, K_relax, G_coeff, and G_relax. Each parameter is required.

For the bulk modulus K, the Prony series parameters are defined by the following
equation:

K(t) =Kinf + (Kg−Kinf)
∑
i

Kcoeff [i]∗ e−
t

Krelax[i] (5.1)

229

A similar equation holds for the shear modulus. Note that, the K_coeff and G_coeff must
sum to 1.0 (individually). Otherwise, the formulation is inconsistent. That is,∑

i

Kcoeff [i] =
∑
i

Gcoeff [i] = 1.0. (5.2)

Note that the number of terms in K_coeff and K_relax must be the same, and the number
of terms in the G_coeff and G_relax must be the same. However, the number of terms in
the K series does not have to equal the number of terms in the G series. Thus, one could
simulate a case where the material shear modulus G is viscoelastic, but the bulk modulus
is not. In this case, the latter would have no terms in its series.

E_g, E_inf, G_g, G_inf may be constant or may depend on temperature. Temperature
functions can specify the value for the limiting moduli, for a given value of temperature.
For example, if the limiting moduli typically depend linearly on temperature, a linear
function can be specified for the values of E_g, E_inf, G_g, G_inf. We refer to the
example given below for the specifics on how to set this up.

Optional parameters for viscoelastic materials include reference (T0), glassy (Tg), In the
event that none of the moduli are specified as functions, the values specified for these
parameters determine which model is used for temperature-dependent behavior. The Tg
parameter may be given as a constant or as a spatially dependent property
(Section 5.4.7.)

Two such models are available: the WLF (Williams-Landel-Ferry) model,65 and the
Hinnerich’s model. The WLF model1,23 is used when shifting temperatures above Tg, while
the Hinnerich’s model is used shifting temperatures below Tg. Both models incorporate the
reference temperature T0 (the reference temperature at which the input viscoelastic
constants are defined), which may differ from Tg. The WLF and Hinnerich’s model use
model-specific constants. We note that any units of temperature can be used, as long as
they are consistent with the values of the constants. The shift factors computed from the
Hinnerich’s or WLF equations are used to scale the coefficients in the Prony series.

The WLF model is
log10 (aT) =− C1(Telem−T0)

C2 +Telem−T0
, (5.3)

where Telem is the current temperature in the element, and T0, C_1, and C_2 are material
parameters that are determined experimentally. Typically, T0 is the glass transition
temperature of the material of interest. The shift factors computed from the WLF
equation are a strong function of temperature.

The Hinnerich’s model, provided by Terry Hinnerich’s, accurately characterizes many
viscoelastic materials below the glassy transition temperature. Its form is

log10 (aT) = aT1 ∗ (1− eaT2∗(Telem−T0)), (5.4)

where aT1 and aT2 are user-specified constants. This equation used to determine an
approximate set of shift factors when experimental data for a particular material is not at
hand.

230

Note if a model is shifted through Tg a composite shift is used. For example if T0 is less
than Tg and Telem is above Tg first a Hinnerich’s shift is used to shift parameters from T0
to Tg then a WLF shift is used to transition those constants from Tg to Telem. These shifts
are automatically computed given T0, Tg, block temperature, C_1, C_2, aT1, and aT2.
Note that if these shifting parameters are not specified in the input file, then no shifting
will be done and the relaxation times as specified in the input deck will be used. If Tg is
unspecified then it defaults to the provided value of T0. Either specify all the shifting
coefficients, or specify none of them. Partial specification rarely succeeds.

After computing the shift factors using one of the two approaches given above, the
relaxation times are shifted. This occurs before computations begin using the relations,

Krelax[i] = aTKrelax[i] (5.5)
Grelax[i] = aTGrelax[i]. (5.6)

Example 5.3 demonstrates how Hinnerich’s model is used to set a linear viscoelastic
material.

Material foam
isotropic_viscoelastic
T_0= 10
T_g = exo_var scalar t_g_input
C_1=15.
C_2=35.
aT_1=6.
aT_2=.0614
K_g = function 1
K_inf 1.e7
G_g 1.e2
G_inf 12.
K_coeff .5 .5
K_relax 3. 2
G_coeff .5 .5
G_relax 1 3
density 0.288

End

Input 5.3. Hinnerich’s viscoelastic material specification

Note that the coefficients of both K and G sum to 1.0. This is necessary for a consistent
formulation. Also, in this case we specify a temperature function for K_g. Thus, the value
of K_g used in the simulations is the value of function 1, at the particular element
temperature Telem. The Tg value is shown reading from an input mesh exodus field named
’t_g_input’. Tg can also be specified as a constant like the other parameters.

231

5.3.1. Limitations of Viscoelastic Use

Linear viscoelastic materials are “linear” in the sense that (linear) transient dynamics
accommodates them exactly. There are limitations for the use of these materials in
Sierra/SD.

1. When using viscoelastic materials in a nonlinear transient simulation, it is
necessary to specify “nonlinear=no” in the BLOCK section of the viscoelastic block.
This is because different internal force mechanisms are called for linear and nonlinear
cases, and viscoelastic materials in Sierra/SD only support a linear constitutive
model and small deformation.

2. When viscoelastic materials are used in a statics simulation, the material is assigned
the properties Ginf and Kinf . This is because in a slow (static) loading, the material
responds with these material properties since they are the long-time or slow response
properties.

3. Likewise, Eigen solutions and the modal based solutions derived from them apply
only the first terms of the Prony series for Ginf and Kinf , which are used to define
the elastic constants of an isotropic elastic material. This is because the real modal
solution must use a constant mass and stiffness matrix, and has no damping
contribution.

4. It is possible to evaluate the eigenvalues expanded about a given frequency,
viscofreq. See the discussion of ceigen in Section 4.20.2. The damping matrix, C,
is taken into account in the eigenvalue problem. Few modal solutions are adapted to
use these complex modes.

5.3.2. Complex Viscoelastic

The isotropic viscoelastic complex material model is currently BETA release.
Enable with the “- -beta” command-line option.

Complex isotropic viscoelastic materials may be defined for directFRF solution cases with
the isotropic_viscoelastic_complex keyword. This material type has 4 required
parameters, representing the real and imaginary shear and bulk moduli: Greal, Gim,
Kreal, and Kim. (The real and imaginary components are commonly known as the storage
and loss moduli, respectively.) Each of these complex viscoelastic parameters must be
defined by a frequency-varying function, e.g. parameter = function <string>.

Example 5.4 demonstrates how a complex linear viscoelastic material is set.

Material 99
isotropic_viscoelastic_complex
Kreal = function 1
Kim = function 2
Greal = function 3

232

Gim = function 4
density 1.0

End

Input 5.4. Viscoelastic material specification

5.4. Properties

5.4.1. Density

For solutions requiring a mass matrix, all material specifications must define density. This
can be set via the keyword density followed by a scalar value. Alternatively, the density
can be defined as a temperature dependent property (Section 5.4.6, as a spatially
dependent property (Section 5.4.7.), or be defined via a file transfer to
receive_sierra_data solution case with (density = from_transfer).

5.4.2. High Cycle Fatigue

Material parameters for high cycle fatigue (Section 4.12) may be provided to define the
statistical failure behavior of materials. These properties are summarized in Table 5-88.

233

Parameter Type Default Description

Fatigue_A1 Real 0.0 S-N curve constant
Fatigue_A2 Real -3.0 S-N curve slope

Fatigue_A3 Real 0.0
S-N curve translation,
Seq = S(1−R)A3

Fatigue_A4 Real 0.0

S-N curve endurance limit.
This parameter is not used
in Sierra/SD fatigue
computations.

Stress_Ratio Real -1.0
R, the ratio of max/min
stress. The default -1
indicates oscillation about a
zero-mean stress state

Fatigue_A Real 1.0 S-N curve constant
Fatigue_m Real 3.0 S-N curve coefficient
Fatigue_Stress Real 1.0 Stress unit conversion factor

std_err Real 0.0 to shift S-N curve by
material uncertainty

t_dist Real 0.0 to shift S-N curve by
material uncertainty

Table 5-88. – Material Section Parameters for Fatigue Parameters.

5.4.3. S-N curve Definitions

There are two competing S-N curve definitions in literature, which are equivalent for S-N
curves that are linear in log-log space, and are both supported by Sierra/SD. The first is
used by Wirsching, Paez, and Ortiz in their book Random Vibrations Theory and
Practice,67 and is supported with the Fatigue_A, and Fatigue_m parameters:

NSm = A

The second is adaptable to a wider variety of materials, and is defined in chapter 9 of
MMPDS20 (otherwise known as MIL-HDBK-5) as:

log10(N) = A1 +A2 log10(S (1−R)A3−A4)

For real materials, A1 is always positive, and A2 is always negative. A2 gives the S-N curve
its negative slope, and A1 represents the crossing of the S-axis on the S-N curve. For the

234

case of an S-N curve which is linear in log-log space, A4 = 0 and the analysis is assumed to
operate at a constant stress ratio such that:

Seq = S(1−R)A3 = S
(
2A3

)
and

log10 (N) = A1 +A2 log10 (Seq)
These functions are equivalent, and the material properties can be mapped to each other
by:

A1 = log10

(
A

(1−R)A2∗A3

)
, A2 =−m

Note that A4 is equivalent to the endurance limit of the material, if it exists. Parameters
A1, A2, A3, and A4 can all be found in MIL-HDBK-520 as empirically derived values for
most metallic materials. See the example in Section 5.4.5. Since the Narrowband approach
has an inherent assumption of zero mean stress, the default is R = -1. While the user can
specify a different R-ratio, such usage would be inconsistent with the Narrowband and
Wirsching methods.

5.4.4. S-N Curve Units

While Sierra/SD requires only a consistent set of units, the introduction of experimental
data with their own units can confuse the solution. This is particularly challenging because
the units for some parameters are mixed, and the data is gathered and presented in only a
single unit system.

The stress scaling parameter helps reduce that problem. Consider the scaled equation for
narrow band damage.

DNB = ν+
o τ

A
(
√

2σsFss)mΓ
(
m

2 + 1
)

(5.7)

Here Fss is the stress scaling parameter. This parameter lets the user convert from the unit
system of the analysis to the unit system of the test data. Table 5-89 provides common
conversions of these stresses.

Model Experimental Units
Units PSI Ksi SI CG
PSI (lbs/in2) 1 0.001 6894.76 68947.6
Ksi (K lbs/in2) 1000 1 6894757 68947573
SI (N/m2) .000145037738 1.4503774e-7 1 10
CG (dynes/cm2) .0000145037738 1.4503774e-8 0.1 1

Table 5-89. – Common Unit Scalings using Fatigue_Stress_Scale. The MIL-HNBK typ-
ically uses Ksi for experimental units.

235

5.4.5. Typical Material Data for Fatigue

Figure 5-24 shows typical fatigue data from MIL-HDBK-5.20 For a range of stress ratios in
this material, the number of cycles to failure is represented by the equation,

log10Nn = 9.65−2.85log10(Seq−61.3)

In this range, and for this material, we have the definitions given in Table 5.4.5.

Parameter Value Comment
Fatigue_A1 9.65 offset in S-N curve. A1 = log(A)
Fatigue_A2 -2.85 slope of S-N curve, −m
Fatigue_A3 S-N curve translation, Seq = (1−R)A3

Fatigue_A4 61.3 endurance limit
Stress_Ratio -0.60 R, determines equivalent stress,

Seq = (1−R)A3

Fatigue_Stress_Scale 0.001 Stress unit conversion to Ksi

236

Figure 5-24. – S-N Curve for Steel Sheet.20 Note that material parameters depend on the
unit system.

237

5.4.6. Temperature dependence

Material properties in Sierra/SD can be specified to be temperature dependent.
Temperature dependent material properties are supported when temperatures are read in
from an Exodus file, or when they are specified on a block-by-block basis. In the case of
Exodus temperatures, the material properties would vary from element to element, since
the temperatures vary with each element. The temperature dependent material properties
are calculated from an elemental average of the Exodus temperatures. When
temperatures are specified on a block-by-block basis, the temperature-dependence of the
material properties can be specified explicitly in the input deck. If temperatures are
specified in the Exodus file and block-by-block in the input deck, then the input deck
values take precedence.

For linear elastic materials, an example of specifying temperature dependent properties is
given below.

Material 1
E function=eTempFunc1
alphat .001
tref 100
nu 0.0
density 7700.0

End

Material 2
E function=eTempFunc2
alphat .001
tref 100
nu 0.0
density 7700.0

End

FUNCTION eTempFunc1
type LINEAR
data 0.0 4.0
data 5.0e9 4.0

End

FUNCTION eTempFunc2
type LINEAR
data 0.0 3.0
data 5.0e9 3.0

End

In this case, the elastic modulus of material 1 is specified by function eTempFunc1, and the

238

elastic modulus of material 2 is specified by function eTempFunc2. The moduli of each
element will be determined from its temperature and an interpolation on the function. In
this example, the functions are trivial, and thus the moduli of materials 1 and 2 will be 4
and 3, respectively. Note that the moduli, density and any of the 4 elastic constants k, g, e,
ν can be specified as temperature dependent, and can be given different functions. In this
example, the Poisson’s ratio is constant and only the elastic modulus is temperature
dependent.

For viscoelastic materials, functions do not need to be specified in the material block to
designate temperature dependence of the shift factors. This is accounted for automatically.
See Section 5.3 on viscoelastic materials for more details.

In addition to linear elastic and linear viscoelastic material properties, the coefficient of
thermal expansion alphat may be given temperature-dependent material properties.

If the thermal_time_step keyword is used the temperature that effects material
properties will be based on the temperature read from the provided time step. Alternatively
the nUpdateDynamicMatrices keyword can be given which will update the material
stiffness based on the last read temperature. The last read temperature is controlled by the
nUpdateTemperature keyword. Updating the dynamic matrices is computationally
expensive and should be done only when temperature has changed significantly.

5.4.7. Spatially Variant Material Properties

Multiple methods exist to define element-to-element spatial dependence in material
properties.

Some material properties in Sierra/SD can be read on an element-by-element basis from
the Exodus mesh file. The syntax for this is parameter=exo_var scalar <string>. Here
<string> is the provided exodus field name. This must be a scalar field (one component)
defined on each element using the material.

For linear elastic materials, an example of specifying exodus based properties is given
below.

Material 1
E = exo_var scalar e_input
nu = exo_var scalar my_Poisson
density = exo_var_scalar elem_density

End

In this case, the elastic modulus of material 1 is specified by the exodus mesh field
’e_input’, the Poisson’s ratio by ’my_Poisson’, and the density by ’elem_density’. The
exodus based properties can be used to define complex spatial dependence of material
properties as may be found in partially compressed foams for example. No time-variance of
material properties is considered, if the input mesh exodus file has multiple time steps the
material property fields should be constant over time to avoid confusion.

239

Additionally, it is possible to define material properties through the general function
function syntax. Syntax and requirements are detailed in table 3-26. Unless otherwise
specified material property functions are evaluated as a function of temperature. The
temperature can be defined via a block temperature int the input deck, an
element-by-element temperature in the exodus input mesh, or a nodal temperature (which
is then interpolated to the element centroid temperatures) in the exodus input mesh.

Material based_on_function
E = function e_temperature_function
nu = 0.3
density = 1

End

Function e_temperature_function
type linear
data 0 1.0e+6
data 400 1.0e+6
data 500 0.9e+6
data 900 0.3e+6

End

Alternatively specific input variables other than temperature can be explicitly defined in
analytic functions. Nodal function responses are mapped to element material properties by
evaluating the function at the nodes, and applying element shape functions to interpolate
those values to the centroid.

Material reads_from_nodal
E = function e_input_function
nu = 0.3
density = 1

End

Function e_input_function
type analytic
expression variable X = nodal some_mesh_var
expression variable Y = nodal another_mesh_var
evaluate expression "sqrt(X) + Y"

End

5.4.8. Specific Heat

Conversion of energy deposited in a structure to a change in temperature may be effected
by a specific heat.

Q= ρV C∆T. (5.8)

240

Here Q is the total heat energy, ρ is the density, V is the volume, C is the specific heat and
∆T is the change in temperature. It is up to the analyst to ensure that consistent units are
employed. Note also that the analyst must determine under what conditions the specific
heat is applied (constant pressure or constant volume).

Specific heat is used only in applying boundary conditions. Energy deposited within a
structure is converted to temperature using equation 5.8. Once converted to temperatures,
thermal stresses and temperature dependent material properties may be applied. A fatal
error is encountered if the specific heat is not specified for each material containing an
energy load. The keyword defaultSpecificHeat defined in the “parameters” section, can
be used to specify a default specific heat for all materials.

Material ’Steel-SI’
E=2e11 // Pa
NU=0.28
density=7850 // kg/m^3
specific heat = 0.45 // J/(gK)
tref = 300 // K
alphat = 0.001

End

The reference temperature is used only for temperature dependent material properties,
such as in viscoelastic materials. In other words,

∆T = Q

ρV C
(5.9)

Telem = Tref + ∆T (5.10)
εthermal = αT (Telem−Tref). (5.11)

Energy loads use the energy per unit mass or specific energy,

Ẽ = Q

ρV
,

as described in Section 7.3.9.

5.4.9. Frequency dependence

For the CJdamp solution method (see Section 4.3), a frequency dependent damping
coefficient, η(f), may be specified. 4 All other solution methods will ignore this keyword.
The CJetaFunction keyword requires as a parameter the identifier of a function. Its use is
specified in the following example. See Section 3.8 for details in specifying the function. If
no function is specified, the block will be treated as if the function were identically zero
everywhere.

4η is twice the normal modal damping coefficient. Thus, if eta=0.02 for all materials, the equivalent modal
damping will be 1 percent.

241

Material 1
E=1e7
NU=0.28
density=0.098
CJetaFunction=1

End

function 1
name ’function to use for material 1 eta’
type linear
data 0.0 0.001
data 100 0.010
data 200 0.030
data 400 0

end

The function specifies the frequency and amplitude pairs for η. The frequencies are in
Hertz. The CJdamp solution process interpolates the function at the eigenvalues to
determine the effective damping for any particular mode.

5.5. Piezoelectric Material

Sierra/SD supports two material models which possess voltage degrees of freedom in
addition to displacements and rotations: dielectric and piezoelectric materials. The
piezoelectric material is characterized by an electro-mechanical coupling in the stiffness
matrix. In general, piezoelectric materials are defined by three constitutive tensors: a rank
four orthotropic elasticity tensor, a rank two anisotropic permittivity tensor, and a rank
three piezoelectric coupling tensor. See theory manual for further details on the constitutive
tensors. Piezoelectric material tensors may be specified in a material block by including the
keyword orthotropic_piezoelectric followed by the required three material tensor
specifications. The nine parameters defining an orthotropic elasticity tensor are given by
the keyword Cij followed by the upper triangle of a six by six matrix. The piezoelectric
coupling tensor is given by the keyword e_ij followed by a six by three coupling matrix.
Sierra/SD assumes the coupling matrix is in its stress-charge form (units charge/Area).
The anisotropic permittivity tensor is provided by the keyword permittivity_ij followed
by a three by three matrix. The permittivity matrix should be populated by absolute
permittivity values (not normalized by the permittivity of free space).

Here is an example of a PZT5A piezoelectric material where e0 is the permittivity of free
space:

242

Material 1
orthotropic_piezoelectriC

Cij = 12.1e10 7.5e10 7.5e10
12.1e10 7.5e10

1.1e11
2.1e10
2.1e10
2.3e10

permittivity_ij = 916 * e0 0 0
0 916 * e_0 0
0 0 830 * e0

e_ij = 0 0 -5.4
0 0 -5.4
0 0 15.8
0 12.3 0
12.3 0 0
0 0 0

density = 7.75e3
End

Input 5.5. Piezoelectric Material

5.6. Dielectric Material

A dielectric material, the second available material possessing a voltage degree of freedom,
is used to model the electro-static behavior of materials that do not exhibit
electro-mechanical coupling (i.e. non-piezoelectric). Dielectrics can be generated with the
keyword dielectric, and are defined with only its permittivity tensor. The following is an
example of a dielectric input example.

Material 1
DIELECTRIC

permittivity_ij = 916 * e0 0 0
0 916 * e_0 0
0 0 830 * e0

End

Input 5.6. Dielectric Material

243

5.7. Block

Each element block in the Exodus file must have a corresponding block section in the
input file. The converse is not true — there can be block entries in the input deck that do
not have corresponding entries in the Exodus file. There are two cases where this can
happen:

• Virtual blocks. These are blocks that have entries in the input deck and are intended
to be part of the model, but have no corresponding entries in the Exodus file. At
this time, only Joint2g elements (see Section 6.21) can be defined to be virtual blocks.

• Extra blocks that have entries in the input deck but are not intended to be part of
the model. These blocks are silently ignored by Sierra/SD.

It is an error to have multiple definitions for the same block. However, Sierra/SD does
not report the error. The behavior of Sierra/SD in this case is not defined. This section
contains information about the properties of the elements within the block.

5.7.1. Block Parameters

There are two main types of block parameters:

1. Parameters common to most elements include:

• Material property references are required for most elements. The material
reference is of the form, material=material_id, where material_id is a string
representing the material identifier (see Section 5).

• coordinate frames - optional

• nonlinear behavior - optional

• block damping - optional

• non-structural mass - optional

2. Element-specific parameters. These properties depend on the element type. A block
parameter applies to all elements in the block. In contrast, a unique attribute may be
specified for each element in a block.

Currently, four groups of elements have parameters. Shells have membrane and bending
factor factors 6.7.5. The Infinite Element 7.1.10 and Perfectly Matched Layer 7.1.11 are
configured using several unique block parameters. And the Beam2 6.9 and Nbeam 6.10
both have several parameters.

An example is provided in input 5.7. The block names can be provided in three forms as
shown in the example. An integer number can be given, the number refers to the Exodus
block id number in the mesh. Alternatively this number be provided as ’BLOCK_##’
which is compatible with Sierra/SM syntax. Also, an option the block name can be given
such as ’aft_cover_plate’, again this is the name of the block in the specified in the

244

Exodus input mesh. Note that the material ID specified for BLOCK 32 uses an index
(material 2), whereas BLOCK aft_cover_plate uses a specified material ID string
“aluminum” These refer to materials defined by blocks “MATERIAL 32 ... END” and
“MATERIAL aluminum ... END” respectively (see Sec. 5 for details).

BLOCK 32
material 2
tria3
thickness 0.01

END

BLOCK aft_cover_plate
material aluminum

END

BLOCK block_3
coordinate 1
spring
Kx=1e6
Ky=0
Kz=0
BlkBeta=0.0031

END

Material aluminum
....

END

Input 5.7. Example Block input

A list of the applicable attributes42 for different element types is shown in Table 5-90.
Each element type is outlined in Section 6.

245

Table 5-90. – Element Attributes.

Element Type keyword Description
ConMass 1 Mass concentrated mass

2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG
Beam 1 Area Area of beam

2 I1 First bending moment
3 I2 Second bending moment
4 J Torsion moment

5,6,7 Orientation orientation vector. For
the orthogonal direction

8,9,10 offset beam offset
Spring 1 Kx spring constant in X

2 Ky spring constant in Y
3 Kz spring constant in Z

Triangle 1 thickness thickness
2 fiber orientation (theta) fiber orientation
3 offset shell offset in normal direction

Quad 1 thickness thickness
2 fiber orientation (theta) fiber orientation
3 offset shell offset in normal direction

246

5.7.2. General Block Parameters

Parameters that are generally applicable to almost all blocks are listed in Table 5-91. More
detailed descriptions are available in the following paragraphs.

5.7.2.1. Nonlinear Behavior The nonlinear behavior of the block in nonlinear solutions
is controlled by the nonlinear keyword. The global default for block-level nonlinear
behavior is set in the parameters section (3.3). Within each block, we can override that
default value. For example, to set a block to default to linear behavior, we would have the
following BLOCK definition.

BLOCK 3
nonlinear=no
material 2
tria3
thickness 0.01

END

Similarly, to turn on the nonlinear behavior for the block, we would have,

BLOCK 3
nonlinear=yes
material 2
tria3
thickness 0.01

END

Note that these block-level nonlinear flags override the global nonlinear_default
keyword that is set in the parameters section (3.3).

Some elements types are incapable of nonlinear behavior. This includes RBE3s, Rbars,
SUPERELEMENTs, and Rrods. By default, use of these elements in nonlinear analysis
will generate a fatal error. Use of the command nonlinear=no in these element blocks will
enable overriding this fatal error and use pure linear behavior for these elements in the
nonlinear analysis. Care should be taken with this option, pure linear elements have some
incompatibilities in nonlinear analysis. For example use of pure-linear elements in
nonlinear analysis can artificially constraint large rotations.

Limitations:
Linear element behavior in a nonlinear solution is limited to the
linear range of the element. For example, rotations are stored
incrementally in nonlinear solutions. This permits us to use ge-
ometrically nonlinear element formulations (such a corotational
formulation). However, it limits the linear behavior in such so-
lutions to rotations less than 360o.

247

Table 5-91. – General Block Parameters.

Keyword Values Description
nonlinear yes/no blockwise nonlinear behavior
material string material identifier

rotational_type Eulerian or blockwise behavior
Lagrangian for
or none rotational dynamics terms

coordinate string reference coordinate frame
blkalpha Real blockwise mass proportional damping
blkbeta Real blockwise stiffness proportional damping
nsm Real blockwise non-structural mass

density_scale_factor Real blockwise density scaling factor
stiffness_scale_factor Real blockwise stiffness scaling factor

T_current Real Temperature to set on every element of the block.

5.7.2.2. Rotational Loading Matrices For problems involving rotational loads, the
rotational_type keyword allows the analyst to specify which type of rotational
formulation to use for a given block of elements. The Eulerian formulation involves a fixed
(non-rotating) coordinate system. The Lagrangian formulation attaches a rotating
coordinate system to the block. If the None options is chosen, then rotational loads are
ignored for this block. Thus, a structure with a rotating disk would only have the
rotational terms applied to the spinning disk, and not the entire structure. The default is
for the rotational_type keyword is None.

5.7.2.3. Coordinate Frame Reference The reference coordinate system may be defined
in a block. This definition applies to all the elements of the block and the associated
materials. At this point, the coordinate system is only recognized for a subset of the
elements (solid elements and springs). Further information on coordinate systems may be
found in Section 3.7.

5.7.2.4. Block Specific Damping In Section 5.8, various methods of specifying the
damping parameters for a model are identified. In addition to these methods, block specific
damping parameters may be applied. These apply a stiffness (or mass) proportional
damping matrix on an element by element basis within the block. Thus, if a model is made
of steel and foam, one could apply a 5% stiffness proportional damping term to the foam,
but leave the steel undamped.

There is no physical justification for proportional damping, and there is no expectation
that it will accurately represent damping mechanisms in a structure. However, it is easy to
apply, and there are cases where proportional damping may reveal a need for more

248

accurate damping models. As with all damping models, the effects depend on the solution
type. For example, both Statics and Eigen analysis ignore the damping matrix.

The damping matrix generated from block specific damping is defined as follows.

D =
nblks∑
i

αiMi+βiKi (5.12)

Where D is the real system damping matrix, and αi and β1 are the proportional mass and
damping coefficients for block i. These coefficients are completely analogous to the system
level coefficients described in Section 5.8. The damping contributions from these block
parameters are always added to the other contributions.

Block specific damping is applied using the blkalpha and blkbeta parameters. Block
proportional damping generates a damping matrix that would couple modal based
solutions. It is not currently available in modal solutions such as modaltransient. Also,
see Section 5.4.9 for material modal like damping.

5.7.2.5. Non-Structural Mass Non-structural mass (NSM) is specified per element block
in the input deck. It is added to the internal mass of the element. One reason to add a
NSM is to use a gravity load to simulate an external load. Another reason is to stabilize
solutions with mass-less nodes. The units depend on the element type as defined in Table
5-92.

5.7.2.6. Non-Structural Mass Corner Cases As mesh topology determines the
dimension, a HexShell element is considered three-dimensional. Layered shell elements add
non-structural mass once per meshed element, not once per layer. The conditions shown in
Table 5-93 cause non-structural mass to be silently ignored and trigger no warnings.

The following is an example of how to use non-structural mass in the input file:

//nsm specified in pounds per square inch
BLOCK 3

material 2
tria3
thickness 0.01
nsm 0.005

END

MATERIAL 2
density 0.5

END

249

Table 5-92. – Non-Structural Mass Units.

Element Type Units Example
ConMass Mass Per Element lbs

Spring or Joint2g Mass Per Element lbs
Beam or Truss mass/length lbs / in

Two Dimensional mass/area lbs / sq-in
Three Dimensional mass/volume lbs / cu-in

Table 5-93. – Unhandled Corner Cases.

Element Type State Result
Beam or Truss Area=0 NSM Silently Ignored

Two Dimensional Thickness=0 NSM Silently Ignored

5.7.2.7. Blockwise Density Scaling An element block may define a scale factor to be
applied to the density of the material. This can be used to calibrate the exact mass in each
block and account for discretization errors, or to reuse materials that only differ in density.
The interaction of this feature with non-structural mass is documented in Table 5-94.

The following is an example of blockwise density scaling in the input file:

BLOCK 3
material 2
density_scale_factor = 1.0025

END

MATERIAL 2
density 0.5

END

Table 5-94. – Combining NSM with Density_Scale_Factor.

Element Type Mass Per Element
ConMass NSM + Mass

Spring or Joint2g NSM
Beam or Truss NSM*Length + Density*Scale*Volume

Two Dimensional NSM*Area + Density*Scale*Volume
Three Dimensional NSM*Volume + Density*Scale*Volume

250

5.7.2.8. Blockwise Stiffness Scaling An element block may define a scale factor to be
applied to the linear stiffness of the material, but the capability has been limited to
isotropic material models only. This can be used to tune the precise stiffness of components
without requiring separate material definitions, usually when adapting a model to match
test results. The stiffness_scale_factor is applied to isotropic materials consistently,
even if the Young’s modulus is not defined explicitly by the user. Any valid combination of
material constants will still be valid.

Note that stiffness_scale_factor is ignored on blocks without a material, such as
spring elements, and attempting to use stiffness_scale_factor with any anisotropic
material will result in an error.

The following is an example of blockwise stiffness scaling in the input file:

BLOCK 3
material 2
stiffness_scale_factor = 1.0025

END

MATERIAL 2
isotropic
E 1e7
nu 0.3
density 0.5

END

5.7.2.9. Piezoelectric Material Damping Only stiffness (blkbeta) and mass
(blkalpha) proportional damping can be applied to electro-mechanical materials, and
damping models can only be specified at the block level. Global damping is prohibited on
any model containing piezoelectric or dielectric materials. Voltage degrees of freedom do
not couple with mass or damping (see theory manual). Hence, a piezoelectric element’s
damping matrix, defined by stiffness and(or) mass proportional damping, is zero at all
voltage degrees of freedom. The effects of mechanical damping will only impact the voltage
degree of freedom responses due to the electro-mechanical stiffness coupling.

5.8. Damping

This section allows input of simple global viscous damping models, using either modal
damping rates or stiffness and mass proportional damping. The various options for the
DAMPING section are shown in Table 5-95.

The damping matrix or modal damping coefficient is determined by summing contributions
from all damping parameters given in Table 5-95. For modal superposition-based transient

251

Table 5-95. – DAMPING Section Options.
Parameter Description
alpha mass proportional damping parameter (real)
beta stiffness proportional damping parameter (real)
gamma uniform modal damping ratio (fraction of critical) applied to all

modes (real)
mode ADDITIONAL modal damping ratio applied to individual

mode(fraction of critical)
(integer, real)

ratiofun index of function to define modal damping ratios
FilterRbm remove rigid body mode contribution to damping
maxRatioFlexibleRbm controls check for 6 RBM with FilterRbm

analysis, modaltransient, all the given parameters are defined. For linear direct implicit
transient analysis, the modal damping parameters apply only to modes for which
eigenvalues and eigenvectors have previously been computed. This depends on the presence
of the keyword nmodes in the solution section of the input file. In the case of a
modalranvib (or ModalFrf analysis in the case of complex modes), modal damping is
available, but the proportional damping parameters alpha and beta are currently
ignored.

The effect of the mass and stiffness proportional parameters on modal damping depends on
the frequencies of the modes. For modal-based analysis, the damping rate for mode i with
radial frequency ωi is given as

ζi = α/(2ωi) +β ·ωi/2 + Γ +mode(i) + ratiofun(i),

where the viscous damping term in the modal equilibrium equation is 2ζiωi. For example
the following damping input section could be used in a modal transient analysis. 2

DAMPING
alpha 0.001 //
beta 0.00005 // C = .001 * M + .00005 * K
gamma 0.005 // 0.5% critical
mode 1 0.01 // gamma+mode_1 = 1.5% of critical
mode 2 0.005 // gamma+mode_2 = 1.0% of critical
mode 3 0.015 // gamma+mode_3 = 2.0% of critical

END

It produces the following damping ratios.

2Use of block specific proportional damping is explained in Section 5.7.2.

252

Mode modal damping ratio modal viscous damping term
1 0.015 + 0.001/(2ω1) + 0.00005ω1/2 0.030ω1 + 0.001 + 0.00005ω2

1
2 0.010 + 0.001/(2ω2) + 0.00005ω2/2 0.020ω2 + 0.001 + 0.00005ω2

2
3 0.020 + 0.001/(2ω3) + 0.00005ω3/2 0.040ω3 + 0.001 + 0.00005ω2

3

In direct transient analysis 3, the full mass and stiffness matrices are integrated for the
solution. Specification of a modal damping method triggers construction of a damping
contribution3 from the previous modal solution. This contribution is combined with other
damping terms such as the proportional damping. Thus, the same damping input section
would produce the damping ratios shown above for the first three modes. Modal damping
is applied to modes computed in a previous solution case. 4

The ratiofun keyword permits definition of modal damping terms based on a frequency
dependent function. The associated function definition (see Section 3.8) provides a table
look up for damping ratios. For example, consider a system with modes at 200 and 500 Hz.
The following example will establish modal damping ratios of .03 and .06 respectively. The
function describes a line defined by ratio(f) = 0.01 + 0.1/1000f .

DAMPING
ratiofun=100

END

FUNCTION 100
type=linear
data 0 0.01
data 1000 0.11

END

The FilterRbm keyword permits proportional damping without damping the rigid body
response. Thus, mass proportional damping can be used with no impact on the rigid body
response. The theory behind this method of damping is described in subsection Damping
of Flexible Modes Only section Solution Procedures of the Theory Manual.

In order for this method of damping to work properly, the structure must have the
conventional six rigid body modes of three translations and three rotations. A check of this
condition is made inside of Sierra/SD, and a fatal error results if this condition is not
satisfied. Specifically, the condition is met if

RatioF lexibleRbm= ‖KΦr‖2
‖Kd‖∞‖Φr‖2

≤ ε (5.13)

3i.e. non-modal based, but linear transient
4A previous modal solution case must have been specified to use modal damping, otherwise Sierra/SD
will warn the user and abort.

253

where K is the stiffness matrix, Φr is the matrix of six rigid body modes, and ‖Kd‖∞ is
the largest entry on the diagonal of K. The scalar tolerance ε can be specified using the
maxRatioFlexibleRbm keyword.

DAMPING
alpha=0.1
FilterRbm
maxRatioFlexibleRbm=0.001 // default is 1e-10

END

The FilterRbm option is compatible with the default Newmark-Beta time integration. If
the the generalized-alpha time integration is used the rho parameter should be set to 0.5.
For additional details see the “Damping of Flexible Modes Only” section of the Sierra/SD
Theory Manual.

5.8.1. Nonlinear transient solutions with damping

Using the stiffness proportional damping parameter beta in a NLtransient analysis will
generate damping terms using the initial (or linear) stiffness matrix. The tangent stiffness
matrix is not used. This reason is that the tangent matrix would be required to compute
the damping terms at each iteration.

Nonlinear solutions do not support standard modal damping.

While nonlinear solutions do not currently support standard modal damping, they may be
damping using the Distributed Damping method of the next section (5.8.2). Like modal
damping, this is a system level damping model.

5.8.2. Nonlinear Distributed Damping using Modal Masing Formulation

The purpose of this formulation is to implement a subsystem or system level nonlinear
distributed damping model into Sierra/SD. The theory on this method is found in the
Sierra/SD Theory Manual.42 Distributed damping is a method developed to model the
nonlinear damping response of a subsystem. It implements the damping in a nonlinear
manner with the use of an internal force term. The damping is modeled by either an Iwan
model or a linear damper, and distributed to the subsystem by a modal expansion. This
method augments the internal force vector through a modal Masing formulation. 2

Previous to the nonlinear transient solution which computes the distributed damping,
eigenvectors must be computed. This is done in a previous solution ’case’ option using
“eigen” methods.

2Masing and Iwan models are used almost interchangeably in this document. Iwan models are a subset of
more general Masing models.

254

The damping section is used to define the type of damping behavior. Currently, only two
types of damping behavior are defined: a linear damper, damper, and an Iwan model,
Iwan.42 Each mode will have a keyword defined after it with an associated parameter
number. The parameters are used to define the damping behavior. If nothing is specified
for a mode, then no damping for that mode is defined. An example input is shown below.

SOLUTION
case ’eig’

eigen
nmodes 16
shift -1e5

case ’nonlinear’
NLtransient

nsteps = 200
time_step = 5.0e-3
rho = 0.8

END

Input 5.8. Modally Damped Nonlinear Transient

255

DAMPING
mode 1 damper 1
mode 2 damper 2
mode 3 damper 2
mode 4 damper 2
mode 5 damper 2
mode 6 damper 2
mode 7 Iwan 4
mode 8 Iwan 4
mode 9 Iwan 4
mode 10 Iwan 3
mode 11 Iwan 3
mode 12 Iwan 3
mode 13 Iwan 3
mode 14 Iwan 3
mode 15 Iwan 3
mode 16 Iwan 3

end
Property 1

Mu = 0.001
K = 0

end
Property 2

Mu = 0.02
K = 0

end
Property 3

chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

end
Property 4

chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

end

Input 5.9. Nonlinear Damping

256

6. Element Library

Sandia Labs has adopted the Exodus format for finite element mesh storage. In Exodus
format collections of elements are stored in element blocks. For this reason, generic
information about finite elements is described in Section 5.7. This section reviews the
specific features of the elements and pseudo-elements.

Some elements have Exodus attributes. Such attributes may be specified either in the
Exodus file per element or the input deck per block or both. Input deck values override
Exodus file values. Attributes are described in this section. An attribute is either required
or optional.

The minimum element diameter is 10−10. If an element has diameter less than the
minimum, then the behavior Sierra is undefined.

6.1. Hex8

The Hex8 is a standard 8 node hexahedron with three degrees of freedom per node. It has
8 integration points, and trilinear shape functions. Isotropic and anisotropic materials are
supported.

There are three variations of Hex8. The default element is a bubble hex element. It is
specified by Hex8b. From a user’s perspective the Hex8b and the Hex8 are
indistinguishable; both use 8 nodes with 3 degrees of freedom per node.

The Hex8b element uses bubble functions58,29,33 to augment the standard element shape
functions. It bends more accurately than the hex8.

The Hex8u specifies a selective deviatoric hex. By default this element uses full-integration
of the deviatoric strain terms and single-point under-integration of the pressure term. The
sd_factor can be specified for this element which controls how the deviatoric terms are
integrated. A sd_factor value of 1.0 (the default) corresponds to full integration of
deviatoric terms. A sd_factor value of 0.0 would make the element behave like an uniform
gradient hex with no hourglass control. Values between 0.0 and 1.0 are also allowed for the
sd_factor which correspond to a mixture between these two states. More information is
given in the selective Integration section Sierra/SD Elements of the Theory Manual.

block
Standard selective deviatoric formulation
hex8u
material 1

end

257

block
Under-integrated formulation for both pressure and deviatoric terms
hex8u
material 1
sd_factor 0.0

end

The fully integrated Hex is specified by Hex8F. While it performs adequately when the
element shape is nearly cubic, it performs poorly for larger aspect ratios. For most
problems involving bending the Hex8b is recommended.

The only required parameter for these elements is the material specification. Any material
may be applied.

For computational acoustics, see Section 3.4.4.

6.2. Hex20

The 20 node variety of Hex element provides quadratic shape functions. It is a far better
element than the Hex8, and should be used if possible. The Hex20 element in Sierra/SD
is similar to elements found in most commercial codes. A material specification is required,
and any structural material may be used.

Shape Function and Gauss point locations for the Hex20 are described in Table 8-128, and
in subsubsection Shape Functions and Gauss Points subsection Quadratic Isoparametric
Solid Elements section Sierra/SD Elements of the Theory Manual.

The stress may be output at the Gauss points as described in Section 8.1.24.

6.3. Wedge6

The Wedge6 is a compatibility element for the Hex8, it is not recommended that the
entire mesh be built of Wedge6 elements. They are primarily intended for applications
where triangles are naturally generated in mesh generation. A material specification is
required, and any structural material may be used.

6.4. Wedge15

The Wedge15 element adds mid-side nodes to the Wedge6. Like the Hex20 and Tet10, it
has quadratic shape functions, and is recommended. A material specification is required,
and any structural material may be used.

258

6.5. Tet4

This is a standard 4 node tetrahedral element with three degrees of freedom per node. The
Tet4 element has one integration point. The shape functions are linear. It is not
recommended to use only Tet4 elements for the entire mesh because standard, linear
tetrahedron are typically much too stiff for structural applications. The Tet4 is provided
primarily for those applications where a mesh may be partially filled with these elements.
If a model is constructed of all tetrahedral elements (as by an automatic mesh generator),
the Tet10 is strongly recommended over the Tet4.

A material specification is required, and any structural material may be used.

6.6. Tet10

This is a standard 10 node tetrahedral element with three degrees of freedom per node.
The Tet10 uses 4-point integration for the stiffness matrix and 16-point integration for the
mass matrix. The shape functions are quadratic. This element is recommended for use in
most structural analyses.

A material specification is required, and any structural material may be used.

6.7. Two-Dimensional Shell and Membrane Elements

Sierra/SD supports a variety of topologically 2D elements that capture shell or membrane
behavior. A specific 2D element formulation can be selected by explicitly specifying the
element type in the input block with keywords such as quadt, quadm, nquad, etc. For
three noded triangles if no specific element formulation is given then by default one of the
Tria3 (isotropic materials) or TriaShell (orthotropic or layered materials) shell formulations
will be used. For all other topologies (4-node quad, 8-node quad, and 6-node triangle) the
default element is composed of sub-triangles using the Tria3 or TriaShell shell formulations
as described in Section 6.7.1

6.7.1. QuadT, Quad8T, and Tria6

The 4-node quad QuadT, 8-node quad Quad8T, and 6-node triangle Tria6 are all
internally composed of sub-triangles. Each of these elements is the Sierra/SD default
formulation for its respective topology. These elements have both membrane and bending
stiffness. The element stiffness and mass matrices are derived by composing internally
generated triangle elements, as illustrated in Figure 6-25, 6-26, and 6-27. Output quantities
such as stress are the average stress over the sub-triangles. Composing elements from
low-order triangles, though not optimal, is adequate for most applications.

259

Figure 6-25. – QuadT Element.
The element is generated by internally combining two Triangle elements.

Triangle #1

Triangle #2

Figure 6-26. – Quad8T Element.

The sub-triangles may be based on either the Tria3, or on the TriaShell element
depending on the material properties. The Tria3 is used for isotropic, single-layer
elements. More complex materials require use of the TriaShell. The underlying triangle
formulation is determined automatically by Sierra/SD, and cannot be selected by the
user. See the description of the Tria3 and TriaShell for details of the formulations of the
triangle elements that compose the QuadT, Quad8T, and Tria6 elements.

Table 6-96 lists the supported inputs.

Sierra/SD example input files that use this element can be found in

Salinas_rtest/patchtests/quadt/quadt-patch8_test
Salinas_rtest/patchtests/quadt/quadt-patch9_test

260

Figure 6-27. – Tria6 Element.

Keyword Description
thickness Thickness of the shell
offset offset of the shell midplane: see Section 6.7.9

material Linear elastic material used by element
layer Layer properties: see Section 6.7.8

coordinate Base global coordinate system: see Section 6.7.7
rotate about axis Coordinate system rotation: see Section 6.7.7

rotate about normal Coordinate system rotation: see Section 6.7.7
membrane_factor Stiffness scale factor: see Section 6.7.6
bending_factor Stiffness scale factor: see Section 6.7.6

Table 6-96. – QuadT, Quad8T, Tria6 Inputs.

6.7.2. QuadM

QuadM is a 4-node quadrilateral membrane element. It has membrane stiffness but no
rotational degrees of freedom (DOFs). Membranes are well suited to structures with very
low bending stiffness, such as fabric. Use of shell elements for such low-bending-stiffness
structures can generate a problematic near-singularity.

In the input deck a block section indicating QuadM is required.

For two-dimensional problems, the QuadM reduces to the standard plane elasticity
element. For three-dimensional problems, it behaves like the plane elasticity element in the
plane, and like a stretched balloon out-of-plane. A preload creates the out-of-plane
stiffness. An unloaded element has no out-of-plane stiffness and may be singular. The
out-of-plane behavior results from an additional stiffness term that is applied to the
out-of-plane DOFs. The stiffness resembles the stiffness associated with Laplace’s equation.
This additional stiffness is derived in classical textbooks.31

Table 6-97 lists the supported inputs.

261

Keyword Description
thickness Thickness of the membrane, required
sd_factor Selective deviatoric parameter used for numerical integration
material Linear elastic material used by element, required
coordinate Base global coordinate system: see Section 6.7.7

rotate about axis Coordinate system rotation: see Section 6.7.7
rotate about normal Coordinate system rotation: see Section 6.7.7
membrane_factor Stiffness scale factor: see Section 6.7.6

Table 6-97. – QuadM inputs.

Both full and selective integration methods are available for the membrane. The full
integration is the default. Selective deviatoric integration can be specified by using the
parameter sd_factor. For example, for full integrated membrane, one would specify

block
QuadM
material 1
thickness 0.1

end

On the other hand, the following block would use the mean quadrature element with a
selective deviatoric parameter of 0.9

block
QuadM
material 1
sd_factor 0.9
thickness 0.1

end

Note that sd_factor must be between 0 and 1. With a value of 0, the element is a mean
quadrature element. With a value of 1, the element is again mean quadrature, but with
fully integrated deviatoric component. More details on the theory behind these elements is
given in the theory manual.

This element could be preloaded before the analysis of interest (e.g., a static preload
followed by eigendecomposition), or even in cases where no preload is applied but the
membranes are sufficiently constrained (such as a hex element with a layer of membrane
elements on the surface).

The QuadM element can be used in coupled simulations. In these cases, Adagio performs
the preload calculation, and the preload information is passed to Sierra/SD for later
analysis. These preloaded elements are non-singular.

262

6.7.2.1. Known Issues

• The membrane element does not currently compute stress, strain, strain energy, or
strain energy density outputs. All these outputs will be reported as zero for the
element.

6.7.3. Nquad/Ntria

The Nquad and Ntria elements are isoparametric shells with membrane and bending
stiffness. They are shear-deformable elements with six DOFs per node which support
isotropic, orthotropic, and layered materials. The formulation of the Nquad/Ntria is
generated by decoupling the membrane and bending DOF. These elements currently only
have linear behavior implemented. If using a non-linear solution method, these elements
will not calculate a true internal force, but a linear force.

The Nquad/Ntria isotropic stiffness matrix is based on the plane elasticity and shear
deformable (Mindlin) formulations as outlined in38 (but not in later editions). The layered
shell stiffness matrix uses a composite laminate formulation.35

In the input deck a block definition indicating either Nquad or Ntria is required. The block
definition must also have a material keyword referencing the isotropic material properties
(Section 5) or orthotropic layer properties (Section 5.1.2) with properties E1, E2, ν12, and
G12). An example element block for a single layer isotropic material is shown below:

block 2
Nquad
thickness 0.1
material 2

end
block 3

Ntria
thickness 0.4
material 4

end

Inputs are given in Table 6-98.

The stabilization method from Belytschko9 is used for the Nquad element. Using
single-point integration K [1x1]

s for the shear stiffness matrix leads to hourglass modes for
some problems. Using full integration K [2x2]

s can cause shear locking in some problems.
Belytschko recommends a shear stiffness matrix that is a linear combination of the reduced
integration and full integration shear stiffness matrices,

Ks = (1− ε)K [1x1]
s + εK [2x2]

s .

The fraction, ε= rt2/A is a function of thickness and area. Here r = 0.03, t is the element
thickness and A is the area of the shell. This automatic selection of ε works well for thin

263

Keyword Description
thickness Thickness of a single layer shell
material Linear elastic material used by single layer element
layer Layer properties: see Section 6.7.8

nquad_eps_max Numerical integration parameter
coordinate Base global coordinate system: see Section 6.7.7

rotate about axis Coordinate system rotation: see Section 6.7.7
rotate about normal Coordinate system rotation: see Section 6.7.7

Table 6-98. – Nquad/Ntri inputs.

plates, but can be a problem for thicker elements; ε should never exceed 1. To limit shear
locking, the fraction may be capped using nquad_eps_max, as shown in the example
below.

block 1
nquad
thickness 1
nquad_eps_max 0.1

end

The value for ε is adjusted using the function ε̂= εmax
4√1+ε4 . This is done to address problems

with “elbow functions” in the code. Figure 6-28 shows this function for nquad_eps_max =
1.

Figure 6-28. – Function for nquad_eps_max.

6.7.3.1. Known Issues

• The Ntria with orthotropic materials sets G23 and G13 to the input value of G12.

264

6.7.4. TriaShell

The TriaShell is a 3-noded triangular element with 6 DOFs. The formulation of the
TriaShell is generated by decoupling the membrane DOF and the bending DOF. Allman’s
Triangular (AT) element2 models the membrane DOF, while the Discrete Kirchhoff
Triangle8 (DKT) models the bending DOF. These two elements are combined into the
TriaShell element.

Keyword Description
thickness Thickness of the shell
offset Offset of the shell midplane: see Section 6.7.9

material Linear elastic material used by single layer element
layer Layer properties: see Section 6.7.8

coordinate Base global coordinate system: see Section 6.7.7
rotate about axis Coordinate system rotation: see Section 6.7.7

rotate about normal Coordinate system rotation: see Section 6.7.7
membrane_factor Stiffness scale factor: see Section 6.7.6
bending_factor Stiffness scale factor: see Section 6.7.6

Table 6-99. – TriaShell input options.

In general, the Tria3 element is preferred to the TriaShell because it is less prone to
shear locking behavior, and it is computationally efficient. The TriaShell element is
required for orthotropic or layered materials.

• TriaShells support orthotropic or anisotropic materials.

• TriaShells support layered materials. Note however that mass lumping is not allowed
with layered TriaShell elements.

6.7.5. Tria3

The Tria3 is a three-dimensional triangular shell with membrane and bending stiffness.
There are 6 DOFs per node. In most respects it is similar to the TriaShell. It is the
default element for triangular meshes. The Tria3 was provided by Carlos Felippa of CU
Boulder. The element handles isotropic unlayered materials.

Keyword Description
thickness Thickness of the shell, required
offset offset of the shell midplane see Section 6.7.9

material must be isotropic, required
membrane_factor Stiffness scale factor, see Section 6.7.6
bending_factor Stiffness scale factor, see Section 6.7.6

265

An example element block is shown below.

block 3
Tria3
Thickness 0.01
material 71
membrane_factor=0 // turns off membrane stiffness

end

6.7.6. Stiffness Scaling

The stiffness of the 2D element bending and membrane responses are computed
independently and can be independently scaled. Use membrane_factor and
bending_factor to configure the element. Each of these parameters default to 1.0.
Reasons for scaling the element stiffness could include accounting for damage to the
structure or tuning of model response to match experimental data.

6.7.7. Shell Coordinate Systems

For orthotropic materials a coordinate system must be defined in the element to set the
local material orientation. First, a user-defined global coordinate system is referenced with
the coordinate keyword (Section 3.7.) The global coordinate system is evaluated at the
element centroid to define a local r̂, ŝ, t̂ system for the element.

This r̂, ŝ, t̂ coordinate system is projected onto the surface of the shell as shown in
Figure 6-29. This projection will rotate the coordinate system such that the t̂p axis aligns
with the shell normal and r̂p and ŝp are as close as possible to the original orientations of r̂
and ŝ. It is recommended to use a global coordinate system in which t̂ lies as close as
possible to the shell normal vectors to minimize ambiguity in this coordinate system
alignment step.

Two additional inputs are available in the shell block to alter the element local coordinate
system. First a rotation can be applied to the r̂, ŝ, t̂ vectors prior to projection onto the
shell plane with the command:

rotate <real> about axis <int>

The rotation angle is given in degrees. The axis integer 1, 2, or 3, represents the r̂, ŝ, or t̂
coordinate axes. After rotation of the coordinate system the r̂′, ŝ′, t̂′ system is aligned to
the plane of the shell. See Figure 6-30 for an example.

A second input option can rotate the element local coordinate system after projection with
the command:

rotate <real> about normal

266

Figure 6-29. – Projection of global coordinate system to shell.

Figure 6-30. – Rotation of global coordinate system about axis prior to projection to shell.

267

Figure 6-31. – Rotation of local system about normal after to projection to shell.

The angle is given in degrees. This will rotate the projected system around the t̂p vector as
shown in Figure 6-31.

Once a shell-local system is defined, the r̂p and ŝp vectors will define the orientation of
orthotropic materials. The fiber_orientation command can do one more local rotation of
this orientation layer-by-layer as described in Section 6.7.8.

6.7.8. Layered Shells

Several of the shell element formulations allow composing the element via a stack of layers
of different materials. This is used to model layered composites. When using layers, the
available materials are isotropic and orthotropic_layer. Each layer must specify a material
and thickness. A fiber orientation, which is a rotation of the layer material coordinate
system with respect to the element coordinate system, may optionally be given. Thickness
and fiber orientation for a multi-layer material must be specified layer by layer in the input
deck. Exodus attributes may not be used.

Keyword layer defines a new layer for the current shell. Layers of the shell are stacked
from the bottom to the top based on the order of the layer keyword in the input deck.
The layer_ID input is an identifier provided by the user and is not used to select stacking
order. A shell may have up to 250 different layers defined. Figure 6-32 shows a simple
schematic explaining how layers are stacked in Sierra/SD. An example element block for
a four-layer orthotropic layered shell is shown below. 3

3For layered shells, the thickness parameter specifies the actual thickness of that layer of the shell. This
is in contrast to the HexShell which specifies a relative thickness: see Section 6.8.

268

Figure 6-32. – Stacking arrangement for a multi layer shell element.

An important parameter for the layered shells with orthotropic materials is the
specification of a user-defined coordinate system with the coordinate option, see
Section 6.7.7 In the example shown here, a coordinate system is defined for the shell block
and orthotropic material properties are defined via a fiber orientation rotation with respect
to that base element system.

block 2
TriaShell
coordinate 1
layer <layer_ID>

material 1 thickness 0.02 fiber orientation 40
layer <layer_ID>

material 2 thickness 0.04 fiber orientation 44
layer <layer_ID>

material 3 thickness 0.03 fiber orientation 54
layer <layer_ID>

material 4 thickness 0.01 fiber orientation 4
end
begin rectangular coordinate system 1

origin 0.0 1.0 1.0
z point 2.0 1.0 1.0
xz point 0.0 1.0 10.0

end

269

Input 6.1. Layered Shell Example

Stress output for shells with more than one layer can be written to an Exodus file or can be
obtained from the result file by specifying stress in the echo section. The layer stresses will
be computed only at the midpoint of each layer. Thus, layer stresses at the top and bottom
of each layer are not supported.

6.7.8.1. Known Issues

• The Navy Layered Shell with orthotropic materials sets G23 and G13 to the input
value of G12.

6.7.9. Offset Shells

By default, the meshed shell element lies at the midplane of the material volume
represented by the shell. Shells may be offset from the midplane by specifying the offset
input. The offset vector is the element unit normal vector scaled by the offset. An example
is shown in Figure 6-33.

The resulting mass and stiffness properties are equivalent to the stiffness generated by
translating the shell by the offset vector, and constraining the resulting offset nodes to the
untranslated nodes using rigid links. The performance of offset shells is better than that of
the constraint approach. Note that for curved surfaces there may be modeling issues with
offset elements since there is no change in curvature with the change in radius.

Figure 6-33. – Offset examples for shell of thickness 0.1.

In the .inp file the element offset is specified as,

270

offset=-3.14e-2

Offsets may also be specified in the Exodus file via attributes (see Section 6.7.10.) Some
limitations of element offsets are described in Section 6.7.9.1

6.7.9.1. Offset Shells and Lumped Mass
The elements more accurately model structures such as shells cladded on a volume. Offset
elements necessarily couple the rotational and translational DOFs. This results in
off-diagonal coupling terms in the element stiffness and mass matrices.

Generally, the element stiffness matrix is fully populated and seldom is reduced. However,
the mass matrix may be lumped (diagonalized) as described in Section 3.4.4.

Mass matrix lumping decouples the translational and rotational DOFs, which is inaccurate
for offset shells. Specifically, while the total mass is conserved, the center of gravity and
mass moments are not. The lumped mass looks as if it had not been offset. This is true
even with mesh refinement. The models of the consistent and lumped mass are
fundamentally different when element offsets are included. Mass lumping with offset shell
elements is discouraged.

6.7.10. Spatially Dependent Properties via Exodus Attributes

Certain 2D element properties can be defined either in the input deck or via attributes on
the input Exodus mesh. When a property is defined in the input deck it has a constant
value for all elements of the block. The advantage of Exodus attributes is that a different
value can be used in each element. This can be used to model properties such as variations
in thickness in tapered shells.

The supported attributes are shown in Table 6-100.

Attribute Index Keyword Description
1 thickness Thickness of the shell
2 fiber_orientation Rotation of material with respect to

local coordinate system
3 offset Offset of the shell midplane with respect to

the meshed surface: see Section 6.7.9

Table 6-100. – Shell parameters that can be set via attributes.

If an input deck value is given for a shell property, such as thickness, it will override any
value given in the Exodus attributes. Attributes cannot be used with multi-layer shells.
For Multi-layer shells all the element properties must be defined in input deck.

271

6.8. HexShell

The 8 noded HexShell is a hybrid solid/shell element. It is meshed as a standard hex
element, but the formulation of the element is similar to that of a shell. Unlike a shell
element, the thickness is determined by the mesh. But, the element is designed to operate
with many of the same features as shell elements even when it becomes thin. Details of the
element formulation are available in a separate report.22 An introduction to HexShells is
readily available in,42 and the verification manual43 discusses the results of the verification
problems from22 for Sierra/SD.

The HexShell has a preferential thickness direction that must be set correctly. There are
three ways to specify the thickness direction.

1. Using the tcoord, it may be specified by a coordinate frame.

2. An Exodus side set may be attached to one face of all the elements in a block using
the keyword sideset. The thickness direction will be defined to be the normal to the
sideset’s surface. For example, if the sideset is placed on a side of the structure that
lies on the x-y plane, then the thickness direction of the HexShell will be defined as
the z direction, since that is the normal to the x-y plane.

3. Sierra/SD may attempt to determine the thickness direction from the topology.
This is the default option (because it is the easiest for the user), but it is also the
least robust.

Sierra/SD attempts to identify the element orientation first using tcoord. The tcoord
keyword abbreviates thickness coordinate, and is only defined for HexShells. If tcoord is
not specified, then Sierra/SD attempts to identify the element orientation second from
the corresponding sideset. These methods do not depend on the decomposition, but the
third method does depend on the decomposition. Lastly if no sideset is specified,
Sierra/SD attempts to determine the thickness direction from the topology.

The element orientation may be identified in the output using the eorient keyword. See
Section 8.1.43.

Thickness Determination by Topology

When the element thickness must be determined by the topology, the mesh must follow
these requirements. The elements in the block must form a sheet. More than one
disconnected portion of the sheet is possible, but all portions must adhere to these
requirements.

• Every element in the sheet must have at least two neighbors, e.g. the sheet can’t be a
single element. NOTE... at this time, this is true for the parallel decomposed mesh
too. The portions of the sheets found in each subdomain can not be a single element.
We must be able to eliminate the thickness direction of each element by its neighbor
connectivity.

272

• The elements in the sheet may vary in thickness, but the sheet must be exactly one
element thick.

• The elements must be connected as a single sheet. Thus, if the sheet turns a corner,
it must do so gently. The algorithm will fail if any element in the sheet is connected
on the top or bottom to another element in the sheet.

Determining element thickness from the topology has known limitations, and is not
planned for an update. This topology method is the oldest and depends on the body being
laid out in a layer one element thick. Unfortunately, it is not well parallelized, as we do not
have ghost elements. The other two methods do not depend on the decomposition.

HexShell Parameters

The HexShell requires a material specification. Optional parameters include the sideset or
the coordinate frame and coordinate direction used to determine the thickness direction.
The sideset keyword must be associated with a defined sideset in the model. The tcoord
keyword requires a string and integer argument. The first is the Name of the coordinate
system referenced. The second is the direction (1, 2 or 3) associated with the coordinate
system.

Keyword Arguments Description
1 sideset ID/name sideset to specify thickness direction
2 tcoord ID/name and direction coordinate frame and coordinate direction
3 autolayers # of layers and material creates specified number of uniform layers

of specified material

An example specification for a multi-layer HexShell is shown in input 6.3.

begin cylindrical coordinate system thickness
origin = 0 0 0
Z point = 0 0 1
XZ point = 1 0 0

end

Input 6.2. HexShell: Coordinate Frame

block 88
HexShell
sideset 88
layer 1 material 1 coordinate 1 thickness .4
layer 2 material 2 coordinate 2 thickness 0.6

end

273

Input 6.3. Multi-layer input with thickness direction determined using a sideset

block 89
HexShell
material 1
tcoord thickness 3 // azimuth

end
block 100 // the normal to

HexShell // sideset 1 will be
material 1 // the thickness
sideset 1 // direction for block 100

end

Input 6.4. HexShell: Block 89 defines the thickness direction using a
coordinate frame and the tcoord keyword.

HexShell Multilayers

The formulation of the HexShell supports multiple layers of orthotropic materials. Each
layer has an associated material, normalized thickness and coordinate. The coordinate is
provided to permit specification of the material coordinate. The thickness specifies the
relative thickness of each layer. The total thickness is determined from the element
topology, but relative thicknesses for each layer must be specified. If only one layer is
specified, then the layer keyword is not required, and the relative thickness is irrelevant
(and not required). 4

There are two methods to specify multiple layers in a HexShell. The first, illustrated in
input 6.3, provides complete flexibility over the material specification, orientation and
thickness of each layer. The autolayers feature provides are much more limited
specification that is useful for models of a single material with temperature dependence
across the thickness. It creates the specified number of layers, of uniform thickness, of a
single specified material.

Materials for all HexShell specifications can be defined as a function of temperature, with
the temperatures defined through the exodus file as element variables. The temperature
can vary over both the elements and layers in the block.

Block 1
HexShell
sideset 1
autolayers 4
material steel

4Layers for HexShells must specify the relative thickness of the layer. This is in contrast to layered shells
which specify the absolute thickness (Section 6.7.8.

274

End
Material steel

E function 1
nu .3
density 0.288

End
Function 1

type Linear
data 0 30e6
data 1e6 20e6

End

Input 6.5. HexShell Autolayer Example. Here, exodus element variables define
the temperature for each element on the block. Exodus layers must be of

uniform thickness, and must be labeled “layer_temp1”, “layer_temp2”, etc.

When using temperature dependent materials, the temperature is obtained from the
exodus file. The modulus is calculated as a function of temperature, and used in the
element stiffness formulation. The temperature can vary both with layers and with
elements. Any of the material parameters in either an isotropic or orthotropic material can
be set to be temperature dependent. In the case of an isotropic material, any pair of two of
the properties G, K, E, or ν can be temperature dependent.

The number of layers in the input file does not need to match the number of layers in the
exodus file. The temperatures in the exodus file will be interpolated piecewise linearly to
the center of the layer in the input file.

Temperature dependent orthotropic materials are supported for HexShells only.
Temperature dependent densities are also supported.

Feature Analytic Verification Tested Parallel User
Reference Section Test Test

general yes 43 Y Y some
multiple layers no† 43 Y

†Felippa’s report contains some verification. It has not been carried into Sierra/SD.

Table 6-101. – HexShell Verification Summary.

275

The mass properties of a layered HexShell are computed approximately
as follows.

1. The volume fraction, fi, and density, ρi, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes
as if an element of density ρ̄=∑

i ρifi filled the entire element.

The net affect of this is that the mass is computed as if an average density
were applied. This could introduce minor errors if the element is thick
and is much denser on one side than another.

For a HexShell if using tcoord, it is important to remember that the material definition
may also use a non-default coordinate frame. In the next example, the thickness
coordinate, tcoord, and the material definition use the same coordinate system.

begin cylindrical coordinate system 1000
origin 0.0 0.0 0.0
z point 1.0 0.0 0.0
xz point 0.0 1.0 0.0
end
block 13

HexShell
tcoord 1000 1
material 8
coordinate 1000

end

6.9. Beam2

The Beam2 element formulation is described in Section 3.14 of.42 This element is similar to
the standard NASTRAN CBAR element, but it does not include a definition for a product
of inertia or area shear factors. A product of inertia and area shear factors are included in
the CBAR element in NASTRAN and are supported by the Nbeam element described in
Section 6.10.

The use of a Beam2 element requires a block definition with a beam2. The block definition
must also have a material keyword referencing an isotropic material. Finally, the Beam2
element must have a defined set of geometric parameters. Attributes may be defined in the
input deck as follows.

Block block_id
Beam2
material = material_id
Area = area

276

Figure 6-34. – Beam Orientation and Local Coordinate System.

I1 = inertia_about_1
I2 = inertia_about_2
J = polar_moment_inertia
orientation = x_orient y_orient z_orient
offset = x_offset y_offset z_offset

End

The keywords are defined in following sections.

We define the local coordinate system before defining the attributes. The local coordinate
system is defined by three axes – xxxelem, yyyelem, and zzzelem. The xxxelem-axis is the axial
direction. It lies along the length of the beam. The other two axes, the yyyelem-axis and
zzzelem-axis, are determined by the orientation vector, VVV . The local coordinate system and
the orientation vector are shown in Figure 6-34. The orientation vector VVV lies in the plane
defined by the xxxelem-axis and the yyyelem-axis – plane 1 in Figure 6-34. The zzzelem-axis has
the same orientation as xxxelem×VVV . Finally the yyyelem-axis has the same orientation as
zzzelem×xelem.

The xxxelem-axis and zzzelem-axis define plane 2 in Figure 6-34. The yyyelem-axis, which lies in
the 1-plane, corresponds to a local 1-axis defined in a cross-sectional plane, a plane normal
to the xxxelem-axis. The zzzelem-axis, which lies in the 2-plane, corresponds to a local 2-axis
defined in the cross-sectional plane.

The Beam2 element attributes are complicated. Four attributes are always required. A
cross-sectional area, area, must be defined. The cross-sectional area can be defined with an
AREA keyword. Two bending moments of inertia are also required. A bending moment of

277

inertia for the 1-plane (bending about the zzzelem-axis) is defined by the I1 keyword.
Bending moments in the 2-plane (or bending about the yyyelem-axis) is defined using the I2
keyword. I1 and I2 are the bending moments in their corresponding planes. I1 and I2 are
not bending about their axes. This convention is consistent with many commercial codes
including NASTRAN. A polar moment of inertia, polar_moment_inertia, for torsion about
the xxxelem-axis is required. The polar moment of inertia can be defined with the J
keyword.

If the cross-section has the symmetry, I1 = I2, then the orientation vector VVV may be an
optional attribute. Otherwise, VVV is a required attribute. It is necessary for the bending
properties to have the correct global orientation. The components of the orientation vector
can be specified with the values x_orient, y_orient, and z_orient using an ORIENT key
word.

For attributes are provided in the Exodus mesh file, if an offset vector will be set through
the attributes, then the orientation vector is always required.

The origin of the 1,2 coordinate system at the beam endpoints is the corresponding grid
points by default. A user specified offset vector VVV off translates the geometric location of
the coordinate system origin. This offset vector is shown in Figure 6-35. For the Beam2
element, one offset vector translates both ends of the beam. The OFFSET keyword is
optional. The offset vectors move the beam neutral axis (the xxxelem-axis) off the line that
passes between the two grid points defining the connectivity of the beam. An offset is
defined by a vector with values x_offset, y_offset, and z_offset. These values are
associated with an OFFSET keyword.

When the offset option is used, the offset stiffness properties are equivalent to the stiffness
generated by translating the beam by the offset direction and constraining the resulting
offset nodes back to the untranslated nodes using rigid links. In addition, the offset mass
properties are equivalent to the mass generated by translating the beam by the offset
direction and constraining the resulting offset nodes back to the untranslated nodes using
rigid links. For the Beam2 element, only the component of the offset vector orthogonal to
the element is used to compute the offset behavior for both the stiffness and mass.

For curved surfaces it is possible for the offset element to be inaccurate. The reason is that
the radius changes, but the curvature does not change. Refer to section 6.7.9.1 for
limitations of element offsets.

The block parameters area, inertia_about_1, inertia_about_2, polar_moment_inertia,
x_orient, y_orient, z_orient, x_offset, y_offset, and z_offset, may also be defined as
attributes in the mesh file. Use the mesh file to specify attributes per element and the
input block to specify attributes per element block. Input deck attributes override mesh
file attributes. Attributes in the mesh file must be in the order specified in Table 6-102.

The Beam2 element supports isotropic materials only.

The following section illustrates the use of the Beam2 keyword in an element block
definition. The element block has an integer block identifier of 3. This element block must
consist of two node elements.

278

Figure 6-35. – Beam Offset and Local Coordinate System.

Table 6-102. – Attributes for Beam2.

Keyword Description
1 Area Cross-section Area
2 I1 First bending moment
3 I2 Second bending moment
4 J Torsion moment

5,6,7 Orientation orientation vector
8,9,10 offset beam offset vector

279

Block 3
Beam2
material 7
area 0.71
I1 .05
I2 5e-2
J 0.994
orientation 1.0 -1.0 0.9
offset -3.14e-2 0.11 0.99

End

6.10. Nbeam

The Nbeam element was developed from the COSMIC/NASTRAN open source CBAR
element. Unlike the Beam2 element discussed in the previous section, the Nbeam
element includes a definition for a product of inertia and definitions for area shear factors.
The Nbeam element, currently, only has linear behavior implemented. If using a nonlinear
solution method, the Nbeam element will not calculate a true internal force, but a linear
force.

The use of a Nbeam element requires a block definition with a Nbeam keyword. The
block definition must also have a material keyword referencing an isotropic material.
Finally, the Nbeam element must have a defined set of geometric parameters. Most
parameters for the Nbeam element may be entered either as attributes in the mesh file or
through keywords in the block definition. Some parameters can be reset from default
values only by use of the keyword definitions in the block definition. The general form of
the block definition is as follows:

block block_id
Nbeam
material = material_id
Area = area
I1 = inertia_about_1
I2 = inertia_about_2
J = polar_moment_inertia
I12 = product_inertia_12
Shear_factor_1 = sfactor1
Shear_factor_2 = sfactor2
orientation = x_orient y_orient z_orient
offset = x_offset y_offset z_offset

end

The various keywords in the above block definition are described in following
paragraphs.

280

Local coordinate frame: Before describing the parameters for the Nbeam element, it is
necessary to define the local coordinate system that is set up for beam elements in
general. The local coordinate system is defined by three axes – xxxelem, yyyelem, and
zzzelem. The xxxelem-axis lies along the length of the offset beam. The other two axes,
the yyyelem-axis and zzzelem-axis, are determined by an orientation vector, VVV . The local
coordinate system and the orientation vector are shown in Figure 6-36. The
orientation vector VVV lies in the plane defined by the xxxelem-axis and the yyyelem-axis –
plane 1 in Figure 6-34. The zzzelem-axis is derived from the orientation vector VVV and
the xxxelem-axis by taking the cross-product xxxelem×VVV . Once the zzzelem-axis is
calculated, the cross-product zzzelem×xelem gives the yyyelem-axis. As the Nbeam
supports arbitrary vector offsets at each end, the orientation of the offset beam may
differ from the orientation of the geometry (see “offset” below) that is not offset.

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Plane 1

Plane 2

y

V
X

Z

elem

elem

el
em

of
fs

et
 b

ea
m

Offset 2

Offset 1 1

2

Figure 6-36. – Nbeam Orientation, Offset and Local Coordinate System. The coordinate
system is in the plane of the offset beam. The plane is defined by the offset beam and the
orientation vector, ~V .

The xxxelem-axis and zzzelem-axis define plane 2 in Figure 6-34. The yyyelem-axis, which
lies in the 1-plane, corresponds to a local 1-axis defined in a cross-sectional plane, a
plane normal to the xxxelem-axis. The zzzelem-axis, which lies in the 2-plane, corresponds
to a local 2-axis defined in the cross-sectional plane.

281

Area: The cross-sectional area, area, must be defined either as exodus attributes or in the
“block” section. The cross-sectional area can defined with an AREA keyword.

Bending Moments: The bending moments of inertia about orientation axes must be
defined either in the exodus file, or the “block” section. A bending moment of inertia
about the 1-axis (the local cross-sectional axis corresponding to the yyyelem-axis),
inertia_about_1, can be defined with the I1 keyword. A bending moment of inertia
about the 2-axis (the local cross-sectional axis corresponding to the zzzelem-axis),
inertia_about_2, can be defined with the I2 keyword. Finally, a polar moment of
inertia, polar_moment_inertia, for torsion about the xxxelem-axis is required. The polar
moment of inertia can be defined with the J keyword.

The Nbeam element supports a product of inertia specification. The product of
inertia about the 1,2-axes, product_inertia_12, is specified with the keyword I12. If
the I12 keyword does not appear, the value for product_inertia_12 defaults to zero.

Shear Factor: The Nbeam element also has two area shear factor specifications. An area
shear factor is a constant by which an average shearing strain on a beam cross-section
must be multiplied in order to obtain the same transverse shear displacement as the
transverse shear displacement that will be obtained from the actual shear strain
distribution for the cross-section. Typically, the shearing strain varies over a
cross-section. See Oden (Ref.36) for a discussion of shear factors. An area shear
factor for shear in the 1-direction, sfactor1, is specified with a Shear_factor_1
keyword. If no Shear_factor_1 keyword appears, the value for sfactor1 defaults to
1.0. An area shear factor for shear in the 2-direction, sfactor2, is specified with a
Shear_factor_2 keyword. If no Shear_factor_2 keyword appears, the value for
sfactor2 defaults to 1.0.

Orientation: The orientation vector VVV must be specified to assure that the bending
properties of the beam have the correct global orientation relative to the rest of the
structure. The components of the orientation vector can be specified with the values
x_orient, y_orient, and z_orient using an Orientation keyword.

Offset: A user may specify offsets exactly as described Section 6.9. and shown in
Figure 6-35. For the Nbeam element, the same offset vector is applied to both ends
of the beam. The OFFSET keyword is optional. The offset vectors move the beam
neutral axis (the xxxelem-axis) off the line that passes between the two grid points
defining the connectivity of the beam. An offset is defined by a vector with values
x_offset, y_offset, and z_offset. These values are associated with an OFFSET
keyword.

When the offset option is used, the offset stiffness properties are equivalent to the
stiffness generated by translating the beam by the offset direction and constraining
the resulting offset nodes back to the untranslated nodes using rigid links. For the
Nbeam element, the full offset vector is used to compute the offset behavior, and
different offsets may be applied at each end. (This behavior is different from the
Beam2 element, in which only the component of the offset vector orthogonal to the
element is used to compute the offset behavior).

282

Table 6-103. – Attributes and Parameters for Nbeam.

Keyword Description
1 Area Area of beam
2 I1 First bending moment
3 I2 Second bending moment
4 J Torsion moment

5,6,7 Orientation orientation vector
8,9,10 offset beam offset vector
11,12,13 – offset of second node

– I12 product of inertia
– Shear_factor_1 shear factor 1-direction
– Shear_factor_2 shear factor 2-direction

Note that for curved surfaces there may be modeling issues with offset elements, since
there is no change in curvature with the change in radius. Refer to Section 6.7.9.1 for
limitations of element offsets.

Many of the parameters described can also be defined as attributes in the mesh file.
Attributes in the mesh file must be in the order specified in Table 6-103. If an attribute is
entered in both the mesh file and the input file, the value in the input file will supersede
the value in the mesh file.

The Nbeam element is restricted to isotropic materials. No stress or strain output is
available for Nbeam elements.

The following section illustrates the use of the Nbeam keyword in an element block
definition. The element block has an integer block identifier of 3. This element block must
consist of two node elements.

block 3
Nbeam
material 7
area 1.92
I1 2.57375
I2 4.81277
J 0.025816
I12 -1.45983
shear_factor_1 0.44021
shear_factor_2 0.33313
orientation 1.0 0.0 0.0
offset 0.5 0.5 0.5

end

283

6.11. TiBeam

This is a Timoshenko beam with consistent mass. For beams with an aspect ration of 100
there is little difference between the beam2 and the tibeam. Beams with an aspect ratio of
10 differ significantly. The tibeam uses the parameters of a the Beam2. In addition the
effective area in shear should be provided (the default is 2/3). For a beam with square
cross section,

block 3
tibeam
material 1
// Shear_factor = 10(1+nu)/(12+11 nu)
areay = .84967320261438
areaz = .84967320261438

end

In this example, the area, I1, I2, J and the orientation are all set in the Exodus file. Recall
that for a circular cross section, the approximate shear factor is given in terms of Poisson’s
ratio, ν, by 6(1 +ν)/(7 + 6ν). At this time, although the parser warns that areay and
areaz are ignored, they are parsed and applied.

6.12. Truss

This is the definition for a Truss element based on Cook (Ref.17). Trusses have stiffness in
extension only. The Truss has 1 attribute as shown in the table. A linear elastic, isotropic
material is required.

Keyword Description
1 Area Area of truss

No stress or strain output is available for trusses.

6.13. Ftruss

The Ftruss is a truss element whose stiffness is a function of the truss length.

Trusses have stiffness in only the axial direction. While they exist in a three-dimensional
world, forces orthogonal to the axial direction result in no resistance, i.e. they are singular.
Setting the axial force,

~F (~Ln, t) =−K(|~Ln|, tn) ~Ln (6.1)
depends on the vector ~Ln from the first point to the second at time tn. Note that |~Ln| is
the instantaneous length of the truss. The force is always in the direction of the
instantaneous element.

284

Table 6-104. – Ftruss Attributes and Parameters.
Name Type Default Comment
1 Area Real 0 required if a material is specified.
2 Scale Real 1 multiplier for the function
- Function string required function identifier (see Section 3.8)
- Material string optional If the material specification is provided,

it must point to a valid material (sec.
5), and an area must also be provided.

Denote by Ko the stiffness of a standard truss, and by Lo the
nominal truss length. F =−Ko dx implies that K = Kodx

Lo+dx . The
definition in equation 6.1 was chosen so that a force may be
applied when dx vanishes.

If a standard (nonuser) function is used, the stiffness is a function of truss extension only.
It may not be a function of both extension and time.

Input to the Ftruss element is similar to that for the truss element. The attributes and
parameters are listed in table 6-104, and a demonstration example is provided below. 5

block 88
Ftruss
function 88
scale 1.0
material 17 //optional material
area 0.01 //area required if material defined

end

If the material keyword is not found, no mass matrix is generated for the element. If a
material is found, then area must also be defined. Like a standard truss, area is the first
Exodus attribute. The area and material properties are used only to compute the mass
properties of the element, and may be omitted. scale may be set either in the input deck,
or in the Exodus file as the second element attribute.

6.14. ConMass

Concentrated masses are used to apply a known amount of mass at a point location. The
Exodus file element topology is a sphere. Support for concentrated masses as two noded
elements in exodus has been deprecated.

5Recall that attributes are ordered data that may be specified in the Exodus file, providing a variable which
changes with each element. Parameters may be specified in the input file, and are applied uniformly to
all elements in the block.

285

Parameters for the ConMass are listed below. Because of difficulties in translation or
generation of the model, the parameters found in the Exodus file are not normally used
for a ConMass. This avoids the confusion generated when mass constant defaults may have
been taken from beams for example. As a result, all parameters must be specified in the
input or the analysis will fail.

This behavior can be tedious however, if many concentrated masses are found in the model,
and if the analyst is confident that the attributes are appropriate for these elements. In
this case, use the ConMassA element. It is identical to the ConMass, but uses the default
attributes from the Exodus file. Typically seven attributes would be specified there.

A concentrated mass must have a mass. If no inertia tensor is specified, then the
concentrated mass has 3 degrees of freedom, displacements. On the other hand a
concentrated mass with an inertia tensor has both displacement and rotational degrees of
freedom.

keyword Description
1 Mass concentrated mass
2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG

As an example element block,

block 5
ConMass
Mass 1000.0
Ixx 1.0
Iyy 2.0
IZZ 1.5
offset 30.0 40.0 50.0

end

The ConMass moments of inertia are defined at the location of the ConMass. The offset can
be used to specify inertial terms about a different point.

A ConMass element will activate either 3 or 6 degrees of freedom on the node the mass is
located. Every ConMass element will activate "DispX", "DispY", and "DispZ". A ConMass
element with non-zero inertial terms or an offset will activate "RotX", "RotY", and "RotZ".
In a case such as a spring-mass system where only one translational degree of freedom is
desired, the mass should be constrained in the other directions. If ConMass elements are
attached to solid elements, through shared nodes or a 2D element, either the inertial terms

286

should be set to zero or the rotational degrees of freedom should be constrained. Failing to
properly constrain the ConMass may result in a solver out-of-bounds error or incorrect
results.

6.15. Spring

The Spring element provides a simple spring connection between two nodes in a model.
Note that the direction of application of the spring should be parallel to a vector
connecting the nodes of the spring. It is usually preferable to have the nodes of the spring
be coincident. Springs are defined in the Exodus database using Beam or Bar elements.

The Spring element has three required parameters (translational spring stiffness).
Rotational parameters are supported using the RSpring element described in Section 6.16.
Currently, there is no way to attach off-diagonal elements, i.e. there is no Kxy spring
element. If that is required, a combination of a spring and a multi-point constraint must be
used.

Springs can be defined in user defined coordinate systems.

Keyword Description
1 Kx translational spring constant in X
2 Ky translational spring constant in Y
3 Kz translational spring constant in Z

As an example element block,

block 51
spring
coordinate 7
Kx 1e6
Ky 1.11E7
Kz 1000

end

6.15.1. Spring Parameter Values

It is strongly recommended that all three values of the spring constants be nonzero. This is
especially important in parallel analysis performed using domain decomposition. Many
domain decomposition tools may partition the model such that zero spring constants lead
to singular domain stiffness matrices. This is true even if other elements may eliminate the
singularity.

287

While setting nonzero spring stiffness helps to avoid solver problems, underlying domain
decomposition problems may still exist for parallel calculations. Domain decomposition
tools employ heuristics for connection of springs to solids; the models are not compatible.
Finite length springs often result in constraints on rigid body modes. 6 Springs fill an
important analysis need, but analysts may find that in many cases it may be better to
replace the spring elements by solid element meshes which more accurately represent the
physical connection. While there are more degrees of freedom in the calculation, the
accuracy is enhanced, and domain decomposition problems are mitigated.

6.16. RSpring

The RSpring element provides a simple rotational spring connection between two nodes in
a model. It is usually preferable to have the nodes of the spring be coincident. RSprings
are defined in the Exodus database using Beam or Bar elements.

The RSpring element has three required parameters (rotational spring stiffness). It is
strongly recommended that all three components have some stiffness. This is particularly
important when doing parallel analysis (see the discussion in Section 6.15.1). Translational
stiffness require the use of the Spring element described in Section 6.15. Currently, there
is no way to attach off diagonal elements, i.e. there is no Kxy spring element. If that is
required, a combination of an RSpring and a multi-point constraint must be used.

RSprings can be defined in user defined coordinate systems. The relevant parameters are
listed in the table.

Keyword Description
1 Krx rotational spring constant in X
2 Kry rotational spring constant in Y
3 Krz rotational spring constant in Z

As an example element block,

block 52
Rspring
coordinate 7
Krx=1e6
Kry = 1.11E7
Krz 0.1

end

6This is not specific to parallel solutions. Most often, finite length springs introduce strain for a model
rotation.

288

6.17. Spring3 - nonlinear cubic spring

The Spring3 element provides a nonlinear spring connection between nodes in a model.
Note that the direction of application of the spring should be parallel to a vector
connecting the nodes of the spring. It is usually preferable to have the nodes of the spring
be coincident. Springs are defined in the Exodus database using Beam or Bar elements.

The nine required parameters are translational spring stiffness. There is no way to attach
off diagonal elements, i.e. there are no Kxy spring elements. If that is required, a
combination of a spring and a multi-point constraint must be used. Cubic springs may be
defined in user defined coordinate system.

Each component of applied force is a cubic polynomial in the corresponding coordinate
direction,

Fx =Kx
1ux+Kx

2u
2
x+Kx

3u
3
x (6.2)

Linear analyses use the first K1 term only.

Keyword Description
1 Kx1 translational linear spring constant in X
2 Ky1 translational linear spring constant in Y
3 Kz1 translational linear spring constant in Z
4 Kx2 translational quadratic spring constant in X
5 Ky2 translational quadratic spring constant in Y
6 Kz2 translational quadratic spring constant in Z
7 Kx3 translational cubic spring constant in X
8 Ky3 translational cubic spring constant in Y
9 Kz3 translational cubic spring constant in Z

Here is an example element block.

block 51
spring3
coordinate 7
Kx1 1e6
Ky1 1.11e7
Kz1 0
Kx2 0
Ky2 0
Kz2 0
Kx3 1e4
Ky3 1.11e5
Kz3 0

end

289

6.18. Dashpot

A dashpot represents a damping term proportional to velocity. Dashpot elements combine
a viscous friction damper with a simple linear spring. The spring is included to avoid
singular stiffness matrices when dashpots are connected without springs. Dashpots are
currently only used in transient dynamic, direct frf and complex eigendecomposition. For
other analyses only the spring term will be used.

The damping factor is the damping matrix entry. It has units of force·time/length. For a
single degree of freedom system with a mass=M , the following equation is satisfied.

K ·u+ c · u̇+M · ü= f(t) (6.3)

Currently, dashpots are defined in the basic coordinate system only. Because they are
single degree of freedom elements, the direction must also be defined (i.e. cid=1, 2 or 3).
There are three parameters. All are required.

Keyword Description
1 K translational linear spring constant
2 c damping factor
3 cid coordinate direction (1, 2 or 3)

As an example element block,

block 51
dashpot
cid=1 // dashpot is in the X direction
K=1e6
c=1e5

end

Dashpots may be represented in the Exodus file with any linear element. The Truss
element most closely mimics the dashpot’s single degree of freedom behavior, and may be
the best definition for domain decomposition tools.

Caution should be exercised when using dashpots (or any single degree of freedom element).
The remaining degrees of freedom must be properly accounted for, or the system matrices
will be singular. Care should also be exercised to ensure that if the nodes of the dashpot
are not coincident, that the constraint force lies along the axis of the element - failure to do
this can result in models that have nonzero rotational modes. There may also be important
domain decomposition issues with dashpots. See Section 6.15 for a discussion.

290

6.19. SpringDashpot

The SpringDashpot element provides a general, fully coupled spring and dashpot
connected to a pair of nodes. It is a linear element only, and is not corotational. It
supports stiffness and damping in the translational and/or rotational degrees of freedom.
The relevant parameters are described in Table 6-105.

Name Description
1 Kxx Translation Stiffness, Kxx

2 Kyy Translation Stiffness, Kyy

3 Kzz Translation Stiffness, Kzz

4 Kxy Translation Stiffness, Kxy

5 Kxz Translation Stiffness, Kxz

6 Kyz Translation Stiffness, Kyz

7 Krxx Rotation Stiffness, Krxx
8 Kryy Rotation Stiffness, Kryy
9 Krzz Rotation Stiffness, Krzz
10 Krxy Rotation Stiffness, Krxy
11 Krxz Rotation Stiffness, Krxz
12 Kryz Rotation Stiffness, Kryz
13 Bxx Translation Damping
14 Byy Translation Damping
15 Bzz Translation Damping
16 Bxy Translation Damping
17 Bxz Translation Damping
18 Byz Translation Damping
19 Brxx Rotation Damping
20 Bryy Rotation Damping
21 Brzz Rotation Damping
22 Brxy Rotation Damping
23 Brxz Rotation Damping
24 Bryz Rotation Damping
25 coordinate coordinate frame

Table 6-105. – SpringDashpot Parameters.

As shown in the table, all the elements of the matrices may be entered for this element. An
example follows.

block 100
SpringDashpot

Kxx = 1e4
Kyy = 1e4
Kzz = 1e4
Kxy = -1e4

291

Kyz = -1e4
Byz = 3.2

end

6.20. Hys

The Hys element provides a simple, one dimensional approximation of a joint going
through microslip. Many simple joints can be represented by their hysteresis loop, a curve
in the displacement vs. force plane. The relevant parameters of this element are indicated
in the table, and illustrated in Figure 6-37.

Keyword Description
1 Kmax maximum slope of f vs u curve
2 Kmin minimum slope of f vs u curve
3 fmax maximum possible force
4 dmax maximum possible displacement

The fmax, dmax pair define the limits of applicability of the element. The element will fail
if the internal force exceeds fmax or the displacement exceeds dmax. The slope of the curve
at the origin is kmax. It represents the small amplitude response of the system. The slope
at the extremum, i.e. at (dmax,kmax) is kmin.

A Hys element uses a Beam or truss element in the Exodus file. At the current time, the
element may only be defined in the X direction. An example of the Sierra/SD input is
shown below.

block 2
Hys
Kmax 4.5e+7
Kmin 3.0e6
fmax 5.92
dmax 0.9833e-6

end

292

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Fmax

Displacement

F
o
rc

e

d
m

a
x

km
a
x

kmin

Figure 6-37. – Hys element parameters.

293

6.21. Joint2G

The Joint2G element models adherence between surfaces. It is represented in the mesh by
a beam element. To preserve rotational invariance 2.8.7, typically the beam length
vanishes. The Joint2G element has all the generic element properties 5.7 : materials,
coordinate frames, optional nonlinearity (Iwan elements), damping, and non-structural
mass 5-92. In addition a Joint2G has a shear axis, that will also be explained later.

Each Joint2G element connects a pair of nodes (or grids, hence the “G” in Joint2G). The
constitutive behavior of each of the degrees of freedom connecting its node pair may be
specified independently.

The relative displacement 8.1.40 may be output. The element responds with generalized
scalar forces corresponding generalized displacements. The EForce output option 8.1.38
includes the generalized forces in the output.

The Joint2G element is used in the Tied Joint 6.36 pseudo-element. To make Sierra easier
to use, the beam element of a Tied Joint is added implicitly by Sierra. These Virtual
elements are included in the output mesh. This enables visualization of the Tied Joints.
All references to Virtual elements apply only to the Virtual elements added for the Joint2G
pseudo-elements in Tied Joints.

Joint deformation under cycling loading is complex. The Iwan element can accurately
model bolted joints, but depends on parameters that must be calibrated (using
experimental data). The Joint2G element was added with the Iwan models.

6.21.1. Specification

A Joint2G pseudo-element is represented in the input Exodus mesh file by either a Beam
or a Bar element. On the other hand, a Joint2G element that is used in a Tied Joint is not
represented by an input file mesh element, and is inferred from the tied surfaces. The
Exodus element attributes are ignored. The element block and, if needed, a property
block, are used to configure the Joint2G. In the example below, properties are assigned to
element block “2”.

block 2
coordinate 5
shear_axis 2
Joint2G
kx=Iwan 1
ky=elastic 1.0e6
kz=elastic 1.0e6
krx=null
kry=null
krz=null

end

294

The above statement declares block 2 to be of type Joint2G. It also declares the
constitutive response in the x to be the 4 parameter Iwan model.45 The model parameters
are specified in “Property 1” defined below. In this case, the four parameters chosen are χ,
φ_max, R, and S. The Iwan properties can be specified alternatively by the parameter set
chi, phi_max, F_S, and beta.

property 1
chi = -0.82139
phi_max = 1.0325e-04
R = 7.608594e+06
S = 5.616950e+06

end

The constitutive behavior in the y and z directions is elastic with stiffness specified by the
third argument - 1.0x106 in this case.

In this example, there is no specification for constitutive behavior in the three rotational
directions. The Null specification merely means that those degrees of freedom in the
relevant nodes are not activated (“touched”) by this element. Because of artifacts
associated with parallelization, it is recommended that if any of the rotational degrees of
freedom are active (not Null), they all should be active.

The directions (“x”, “y”, and “z”) employed above are those associated with the coordinate
system declared for the block. In the example shown, there is an explicit reference to
coordinate system 5. If there is no such explicit reference to a coordinate system, then the
“x”, “y”, and “z” directions are those of the global coordinate system.

In the case when the joint2G element is used in conjunction with a Tied Joint, then the
shear_axis can be used to specify the “x” direction for the constitutive response of the
joint2G. Note that the shear_axis parameter is only meaningful when the joint2G is used
in conjunction with a Tied Joint.

The shear_axis parameter allows the user to specify the “x” direction for the constitutive
behavior. Since shear_axis is set to 2 in the above example, the “x” direction will be
derived from the second component of coordinate 5. For more information on the
shear_axis parameter, we refer to Figure 6-52 and Section 6.36.

6.21.2. Constitutive Behavior

Elastic Undamped, linear elastic behavior is defined by the elastic followed by the value
of the parameter. No property section is required.

Damper Linear, damped behavior is obtained using a damper in the Joint2G definition,
and using a property definition to specify the stiffness and damping terms. Typically, each
direction will require a different property definition.

295

property 1
DAMPER
K=1e6
MU=.2

end

Input 6.6. Damper property card

block 3
Joint2g
kx=damper 1
ky=damper 1
kz=damper 1
krx=null
kry=null
krz=null

end

Input 6.7. Joint2G as damper

4-Parameter Iwan Model (Iwan) The Iwan element is a collection of spring slider
elements designed to provide a predicted model of joint behavior (including energy loss).
Joint modeling with Iwan elements is described elsewhere.46,50 Descriptions of the
relationship of the Iwan element to other joint elements are also available.47

The schematic of the Iwan model is shown in figure 6-38. Parameters for the behavior may
be specified using either an older definition (Table 6-106), or a newer set (Table 6-107).
The newer parameters are summarized below.

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at

small amplitudes
2 R Constant coefficient in distribution
3 phi_max Maximum break free pseudo-force
4 S Strength of singularity in break free force distribution

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 6-106. – Older Iwan 4-parameter model.

296

k

x

φ

k

x

φ

k

x

φ

k

x

φ

U(t)

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1

1

n

n

K
1

3

3

2

2

F(t)

u(t)

Figure 6-38. – Iwan Constitutive Model.

297

Keyword Description
1 chi Exponent, χ, describing slope of force-dissipation curve at

small amplitudes
2 beta shape parameter of force/dissipation curve
3 K_T Tangent stiffness at low loads
4 FS Maximum break free pseudo-force

alpha Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)

sliders Number of slider elements (optional, default = 50)

Table 6-107. – Revised Iwan 4-parameter model.

chi: determines the slope of the dissipation-force curve. Typically, 0< χ <−1. A value of
zero corresponds to a coulomb type loss in Mindlin solutions. A value of χ=−1
corresponds to a viscous like (but amplitude dependent) loss with dissipation
proportional to the square of the amplitude. Dissipation follows the relation,

Dissipation≈ (Amplitude)χ+3

beta: determines the shape of the dissipation-force curve. Beta affects both the shape of
the hysteresis curve within microslip (Figure 6-39), and the abruptness of the
transition from microslip to macroslip as shown in Figure 6-40. 0≤ β <∞.

KT: determines the slope of the force-displacement curve at low amplitudes. This is
equivalent to a spring constant, and is used as such in analyses for which the element
is treated linearly.

FS: determines the force at which the last slider gives out, and element goes into
macroslip. The Iwan element is a statistical distribution of spring/slider elements.
This is a point on that distribution.

The Reduced Iwan improves on the Iwan by requiring less calibration. Mechanisms to
capture nonlinearity and dissipation are provided. Accuracy however depends on the fit
with the experimental data under varying loading conditions.

Reduced Iwan Plus Pinning (RIwan) Reduced Iwan model, described later in the
section, can be used as a constitutive model for a Joint2G definition using the riwan. This
can be used for any desired direction, using the following format that requires an
associated property block:

block 3
Joint2G
kx=damper 1
ky=riwan 2
kz=damper 3
krx=null

298

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

u/φ
max

F
(u

)/
F

S

β=0

β=1

Figure 6-39. – Dimensionless hysteresis curves for the four-parameter Iwan model with χ=
−1/2 and two values of β.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

u/φ
max

F
(u

)/
F

S

β=0

β=1

β=∞

Figure 6-40. – Dimensionless static loading curves for the four-parameter Iwan model with
χ=−1/2 and three values of β, as the model goes into macroslip.

299

kry=null
krz=null

end

Input 6.8. Joint2G Element Block

property 2
FS=4e3
Kt=1.5e7
chi=-0.5
beta=0.005
Kp=2e7
dp =2e-3

end

Input 6.9. Property text for the Joint2G

Description: An RIwan element12 is a modified and revised 4 parameter Iwan model. The
modifications include (a) simplification of the Iwan force by assuming that, upon load
reversal, the distribution of friction elements resembles scaled version of the original
distribution, and (b) incorporation of pinning forces through approximation of Hertzian
contact. The monotonic load-displacement curve for this element is shown in Figure 6-41,
where the initial nonlinear curve corresponds to microslip, the plateau corresponds to
macroslip, and the steep linear curve represents pinning. In summary,

FRIwan = FPin+FSliding. (6.4)

where the pinning force is given by the linear relationship,

FPin =

Kp(u− δp), u > δp
0, δp ≤ u≤ δp
Kp(u+ δp), u <−δp

(6.5)

where δp is the pinning displacement shown in 6-41. The sliding force is given by

FSliding =
F0 + FS−F0

FS
FIwan

(
u FS
FS−F0

)
loading

F0− −FS−F0
−FS FIwan

(
−u −FS
−FS−F0

)
reverse loading

(6.6)

where F0 is the shifted central force with −FS < F0 < FS . Table 6-107 and Figure 6-41
define FS ,KT ,χ,β,KP , δP . We use the 4 parameter model Iwan force. FIwan =

FS(χ+1)
φχ+2
MAX

(
β+χ+1

χ+2

) ((1
χ+2 −

1
χ+1

)
uχ+2 + φχ+1

MAX
χ+1 u

)
+ FS
φMAX

β

β+χ+1
χ+2

min(u,φMAX)
(6.7)

300

Figure 6-41. – Reduced Iwan Load Displacement Curve.

One Dimensional Gap Model (gap) The Gap element model attempts to represent the
behavior of a gap closure with a bilinear elastic element. For proper numerical behavior,
the stiffness of the open gap should not be more than a few orders of magnitude less than
the stiffness when the gap is closed. The Joint2G implementation of the Gap model is
identical to the axial behavior of NASTRANs cgap/pgap element and the axial behavior of
the stand alone version of the Gap element implemented in Sierra/SD (Section 6.23).

Keyword Description
1 Ku Unloaded Stiffness
2 Kl Loaded Stiffness
3 U0 Initial Gap Opening
4 F0 Preload (force at U0)

property 1
ku = 1e5
kl = 1e6
U0 = 0.01
F0 = 200

end

Elastic Plastic Hardening Model (eplas) eplas element is an elastic-plastic
one-dimensional element with linear isotropic hardening. Both the plastic strain and the

301

f

disp

fyield

Slope= K∗Kp
K+Kp

Slope=K

Figure 6-42. – Eplas Model.

hardening variable are initialized to zero. The parameters are illustrated in Figure 6-42.

Keyword Description
1 k Linear Stiffness
2 kp Hardening Stiffness
3 fyield Force at Yield

property 1
k = 1e6
kp = 1e5
fyield = 1e4

end

One Dimensional Spring-Dashpot Model (damper) A damper represents a damping
term proportional to velocity. Damper elements combine a viscous friction damper with a
linear or cubic spring. The spring is included to avoid singular stiffness matrices when
dampers are connected without springs. Dampers are currently only used in transient
dynamic, direct FRF and complex modal analyses. For other analyses only the spring
terms will be used. The behavior of this element is similar to dashpot, but also includes
cubic terms.

The damping factor is the damping matrix entry. It has units of force·time/length. For a
single degree of freedom system with a mass=M , the following equation is satisfied.

K ·u+µ · u̇+M · ü+K3 ·u3 +µ3 · u̇3 = f(t) (6.8)

302

Keyword Description
1 K stiffness
2 Mu viscous damper coefficient
3 K3 Optional cubic stiffness coefficient
4 Mu3 Optional cubic damping coefficient

property 1
K = 1e6
Mu = 1e2
K3 = 1e4 // optional, default=0
Mu3 = 0.1 // optional, default=0

end

Additional Constitutive Behavior The philosophy employed in the implementation of
the Joint2G element of decoupling the constitutive behavior from the element machinery
should facilitate the implementation of other constitutive models. Among those whose
implementation is foreseen are the following:

• Bouc-Wen hysteresis model

• Preisach hysteresis model

6.22. Line Weld

Line welds offer a way to join two shells by a collection of virtual Joint2G elements
(section 6.21). The position of the line weld is defined by a collection of beams which are
meshed contiguously with one of the shells. Using a contiguously-meshed beam instead of
the shell directly to define the line weld position enables more general weld definitions (e.g.
skip welds).

Figure 6-43. – Line weld definitions for attaching the purple and cyan shells. The line weld
follows the red beam, which is contiguously meshed with the purple shell.

303

In figure 6-43, the line weld will be used to join block 3 (in red) to surface 1 on the cyan
shell. This is accomplished in three steps, each illustrated by figure 6-44:

• Create a new virtual node (in green) coincident with every existing block node

• Tie each virtual node to the nodes of the shell on which it lies

• Create a zero-length, virtual Joint2G between every block node and its coincident
virtual node

Figure 6-44. – Line weld Joint2G connections. The Joint2G elements are initially zero-
length, and the green and red nodes coincident, but they are depicted with a finite deformation
to delineate the individual components.

Currently, line welds in Sierra/SD are only available for the elastic Joint2G axial
constitutive model. These can be thought of as a general translational/rotational spring,
with axes as shown in figure 6-43. Input 6.10 gives an example input for the line weld
shown in figure 6-43. Note that rotational stiffness is only supported along the direction of
the beam (the “r-axis”). Any rotational components along the other two axes will be
ignored.

In keeping with Sierra/SM syntax, line welds may be specified using a force vs. deflection
function as shown in Input 6.11. The current line weld capability is purely linear, and the
line weld stiffness k is determined by estimating the derivative with a forward
finite-difference stencil, i.e.,

k ≈ lim
h→0+

f(h)−f(0)
h

.

A warning is issued if the corresponding backward stencil indicates that the derivative is
not well-defined. If

lim
h→0+

f(h)−f(0)
h

6= lim
h→0−

f(h)−f(0)
h

.

A fixed step size is used, so although the code will detect the case where the limits are not
equal, it will not know whether the one-sided limits are well-defined. To aid the user in
assessing the validity of these operations, the estimated stiffness values and other critical
information is reported in the rslt file.

304

Gap removal is enabled by default, and can be disabled using the gap removal option.
The gap removal solution method 4.34 can make debug easier. Disabling gap removal can
cause artificial grounding of rigid body modes, but can avoid collapsing elements when the
search tolerance is large or when element quality is low. As with contact, the output mesh
represents the model after gap removal.

begin line weld
surface = surface_1
block = block_3
search tolerance = 1e-4
r displacement elastic = 1.0e6
s displacement elastic = 1.0e6
t displacement elastic = 1.0e6
r rotation elastic = 1.0e6
gap removal = on

end

Input 6.10. Line weld input corresponding to figure 6-43

begin line weld
surface = surface_1
block = block_3
search tolerance = 1e-4
r displacement function = R_force_function
r displacement scale factor = 1.0
s displacement function = S_force_function
s displacement scale factor = 1.0
t displacement function = T_force_function
t displacement scale factor = 1.0
r rotation function = Rrot_force_function
r rotation scale factor = 1.0
gap removal = on

end

Input 6.11. Force function syntax for line welds

Adding line_weld to an outputs or history block selects line weld output. To get the line
weld output in the history file, the beam block from which the line welds were created must
be included in the history section using block. The keyword line_weld adds the
additional outputs shown in table 6-108 to the beam elements from which the line weld was

305

created. The new virtual line weld elements created in the mesh have the usual output
associated with a Joint2G element, such as eforce.

Line welds output force per unit length in the weld local coordinate system as
line_weld_force_rst and line_weld_moment_rst .

Name type Description
line_weld_weld_active int A value of one marks beams within

search tolerance to the surfaces that
have active welds

line_weld_initial_weld_length real Length of the line weld beam element
line_weld_force vector Force per unit length produced by

the line weld in the global XYZ sys-
tem

line_weld_moment vector Moment per unit length produced by
the line weld in the global XYZ sys-
tem

line_weld_force_rst vector Force per unit length produced by
the line weld in the element local
RST system

line_weld_moment_rst vector Moment per unit length produced by
the line weld in the element local
RST system

Table 6-108. – Line weld output: note that these are intended to exactly match the equivalent
outputs in Sierra/SM.

6.23. Gap element

Gap elements are modeled after the non-adaptive NASTRAN CGAP/PGAP elements. They
are intended to provide a simple, penalty type element suitable for modeling simple
connections. Note that these elements (like all beam-like elements) when embedded in solid
meshes can result in difficult domain decompositions, and lead to load imbalance.

The Gap element is inherently nonlinear. In linear analysis, the element behaves
approximately like a spring with the stiffness determined by KL and KU and a transverse
stiffness, KT. The parameters of the element are listed in the table below and shown
graphically in Figure 6-45.

306

Keyword Description
1 KU Unloaded stiffness
2 KL Loaded stiffness
3 KT Transverse stiffness (closed)
4 U0 Initial gap opening
5 F0 Preload, i.e. force at U0
6 coordinate Coordinate frame.

If the gap is open, then the element stiffness is the unloaded stiffness, KU , which must be
positive. A gap is closed if UA−UB > U0. If the gap is closed (as shown in the figure), then
the element stiffness is the loaded stiffness, KL.

The initial gap opening and preload define the corner point in the force/deflection curve as
shown in Figure 6-45. Typically, these will be zero.

A Gap element provides for transverse stiffness and friction. When the gap is closed, the
transverse stiffness is KT. If the gap is open, the transverse stiffness is reduced to
KT ′ =KT ×KU/KL.

The coordinate frame is an optional attribute of the gap element. The gap open and closes
along the X axis of the frame. Note that the direction of the coordinate frame is
important. The element determines a quantity UA−UB along this coordinate axis. This
axis may not align with the coordinate alignment of the elements, which can lead to
confusion. If the coordinate frame is not provided, each Gap element will have a coordinate
frame generated such that the gap opens and closes along the line between the two points.
If the points are coincident, then a coordinate frame must be provided.

The Gap element is a simple penalty type element that somewhat mimics the effect of a
physical gap. Choice of the value of KL is important to success of the element. Good
values are somewhat in the range of the neighboring element stiffness. Too large a value
can lead to matrix condition problems. Too small a value results in excessive softness and
penetration in the gap.

Because the element is nonlinear, it has a significant impact on solutions. As described in
Section 4.21 (and the update_tangent keyword), the default behavior for the nonlinear
solver is a partial Newton iteration. This means that the tangent stiffness matrix is not
updated between iterations. Thus, if KL and KU are different, the solver will be using the
wrong slope in the newton loop. Many, many iterations may be required for convergence.
You may want to turn on the ‘nlresiduals’ option in the echo section (see 8.8) which will
put convergence information into the results file.

An example is shown below.

block 2
GAP
KL 4.5e+7
KU 3.0e6

307

KT=1e6
f0 5.92
u0=0.9833e-6
coordinate 5

end

x compression

Fx compression

U0

F0

UA - UB

Slope=KU

Slope=KL

Figure 6-45. – Gap element Force-Deflection Curve.

Gap Issues The Gap element is definitely more complex than most elastic elements. Here
is a partial list of “gotchas” that we have observed.

• Gaps should normally be zero length elements. Like springs, a gap that has a
physical length will not be invariant to rigid body rotation. See Section 2.8.7. One
approach to this would be to use a combination of beam and Gap elements. Note
however, that if KT is zero, and the gap opens and closes along the line between the
beam endpoints, the element is invariant to rotation.

• The Gap element may use a coordinate frame to define its direction. In this case the
direction is not set by the nodal coordinates.

• The direction of the Gap element must correlate to the displacement difference from
UB−UA. It is easy to get this direction reversed.

• If you set U0, you must also set F0. This element does not constrain the
force/displacement curve to go through zero. The input must do this. The Gap
element may thus be used to enforce an initial displacement or force. That may not
be what you want. It can cause slow convergence on the initial time step.

• Significant numerical damping may be required for convergence. Closing the gap can
cause energy to be moved into higher frequencies. Without numerical damping, this
energy can multiply until the solution becomes unstable. Numerical damping is best
introduced by setting “rho” in the time integrator. Values of “rho=0.2” to
“rho=0.7” have worked well. It is problem dependent.

308

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

Time

D
is

p

U0=1e−7

Figure 6-46. – Mass bouncing off a Gap. With this large time step the model is not conserving
energy. Reducing the time step is required to correct the problem.

Physically closing a gap would cause some energy loss, either by microslip, or by a
small amount of local plastic deformation. Numerical damping can dissipate this
energy that is removed from the physical system by means that are not included in
the finite element model.

• This Gap element may not conserve energy. This is demonstrated in Figure 6-46,
where a mass is dropped onto a gap. A completely elastic rebound would take the
mass back to zero. Instead, it rebounds significantly above zero. This issue comes
about because of time discretization. The mass “penetrates” the gap region too far,
which stores too much energy in the element. It is then expelled with too much
velocity. The only solution with this element is to reduce the integration step.

• Setting either KU or KL to zero is a recipe for disaster in parallel. Use a small positive
value even if physically the unloaded stiffness may be zero.

6.24. Gap2D

The Gap element of the previous section provides a useful construct for planar type
interactions. A common modeling issue is a bolt hole that is too large. To model this
interaction an ellipsoidal Gap element (or Gap2D) may be required.

309

Keyword Description
1 KU Unloaded stiffness
2 KL Loaded stiffness
3 KT Transverse stiffness (z direction)
4 U0X Initial gap opening, major direction
5 U0Y Initial gap opening, minor direction
6 coordinate Coordinate frame.

Figure 6-47. – Gap2D force diagram.

The Gap2D element operates like the Gap element except that the gap could open in 2
dimensions. The gap is open provided that the element displacement is within an ellipse
defined by the major and minor axes.(

ux
U0X

)2
+
(
uy
U0Y

)2
< 1 (6.9)

The major and minor axes of the ellipse are defined in the x and y direction of the
coordinate frame.

Parameters of the Gap2D element are listed below.

While the gap geometry is defined as an ellipse, stiffness is not. In the open section of the
element, the in-plane stiffness is KU, and is independent of direction. Likewise, in the closed
gap region, the in-plane stiffness is independent of direction, and is defined by KL. The out
of plane stiffness for this element is always KT. Note that the transverse stiffness behavior is
significantly different from that of the standard Gap element.

The definitions above define the gradient of the force only, and for this nonlinear force, the
value of the force depends on the path chosen for integration. For this element, we define
the force as the integral along the shortest line from the origin.

In Figure 6-47, two possible integration paths are shown for arriving at the point (x1,y1).
In the first path, we integrate to (x1,0) and then up to (x1,y1). The y component of force
is f (1)

y = KL ·y1. In path 2, we follow the straight line through (xb,yb). The associated force
is f (2)

y = KU ·yb+KL(y1−yb). For this element, we always choose the shortest line path
(path 2). This ensures that the force is not history dependent.

6.25. GasDmp

GasDmp is currently BETA release.
Enable with the “- -beta” command-line option.

310

A GasDmp element is a nonlinear, beam-like element that simulates the damping forces
on MEMS devices due to gas pressure as MEMS beams vibrate. It has no stiffness, but has
damping roughly proportional to velocity/L3, where L is the distance from the beam to the
substrate. It is experimental. Contact Troy Skousen of Sandia National Labs or Professor
Burak Ozdoganlar at Carnegie Mellon.

Inputs to the GasDmp element are as follows.

Keyword Description
1 W Beam width (length units)
2 dL Considered length of beam (length)
3 mm Molecular mass of gas (mass)
4 p0 Ambient pressure of gas (pressure)
5 T Ambient temperature of gas (temperature)
6 muRef Reference viscosity (pressure * time)
7 TRef Reference temperature (temperature)
8 ww Viscous temperature exponent

Currently, the parameters are implemented through the input file and not through the
Exodus_II file.

6.26. Nmount

The Nmount element is a Navy-specific mount element that provides an external force at
user-specified points in the model. These forces are formed from a constitutive equation
that is supplied by the user in the form of a subroutine. The Nmount capability provides
an interface capability that allows the user to input their own subroutine that evaluates the
constitutive equation.

An example of the user interface is shown in input 6.12. Mount orthogonal directions must
be provided either as attributes in the Exodus file, or using the “Orientation” keyword in
the “block” section. The relation of the orientation vector to internal element coordinates
is shown in Figure 6-48. Remaining information is provided in the “block” section. Each
mount type requires a separate block entry. Mount parameters are provided as text input
in the block section. A list of built in Nmount types is listed in Table 6-109.

Each mount type may require a different number of mount parameters. If more parameters
are provided than required for this mount, the additional parameters are ignored without
warning. If fewer parameters are provided than are anticipated for the mount, the last
parameters are set to zero, a warning is printed, and the analysis continues.

Mount type “7” is a special user subroutine mount. This mount type relies on Fortran or C
functions compiled into the code at runtime. For this option user subroutine file must
be defined in the file section. The user subroutines are incorporated into a custom build of
the Sierra/SD executable with a command line like

311

sierra --make salinas -i my_input.inp

See the Sierra/SM user manual for more details on the mount user subroutine formats and
requirements.

block 41378
Nmount
mount type = 99

parameters = 1.414 3.141 2.713
orientation = 0 0.7 1

end

Input 6.12. Sierra/SD Mount Interface

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������

������
������
������
������
������
������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Z

X

Y

elem

elem

elem

V

����

��
��
��
��

Node 1

Node 2

Figure 6-48. – Nmount Orientation
Xelem normalized vector from node 1 to node 2, changes as the structure

deforms

~V User provided orientation vector.

Zelem = X̂elem×~V

|X̂elem×~V |

Yelem = Ẑelem× X̂elem. A normalized vector in the Xelem
~V plane, and or-

thogonal to Xelem.

Stability The Nmount element applies a force to the joining nodes in much the same way
as an externally applied force. It provides no contribution to the stiffness matrix, and as
such resembles an explicit element. Thus, stability issues can arise with this formulation.
For certain models, damping has been shown to stabilize the formulation. The user may
need to experiment with time step and damping levels to determine appropriate
parameters for a stable solution.

312

Name Index Comment/Parameters

fail_truss 1

1 = Axial stiffness, Kr
2 = torsional stiffness
3 = critical value of tensile strain
4 = critical value of rotational strain

SpringDashpot 2

1 = Axial stiffness, Kr
2 = Stiffness in S frame, Ks
3 = Stiffness in T frame, Kt
4 = Axial damping, Cr
5 = Damping coefficient in S frame, Cs
6 = Damping coefficient in T frame, Ct

Snubber 3

1 = Model Direction (1=axial, 2=radial)
2 = Model Type (1=10k, 2=20k)
3 = Snubber gap
4 = offset
5 = input weight on compression
6 = input angle of radial action

TorsionalSpring 4
1 = Torsional spring constant, Kθ

M =Kθ(θ2− θ1)

Test-spring 5

1 = Kx

2 = Ky

3 = Kz

4 = Kθx

5 = Kθy

6 = Kθz

Fj =Kjxj and Mj =Kθjθj

NLSpring 6

1 = Kx

2 = Ky

3 = Kz

4 = Wx

5 = Wy

6 = Wz
~F =Kx+W x2

subroutine 7

Mount behavior defined by
mount force subroutine = <string>
mount init subroutine = <string>
mount size subroutine = <string>

Table 6-109. – Built in Nmount Models.

313

6.27. Rrod

An Rrod is a pseudoelement which is infinitely stiff in the extension direction. The
constraints for an Rrod may be conveniently stated that the dot product of the translation
and the beam axial direction for a Rrod is zero. There is one constraint equation per
Rrod.

The Rrod is specified using beams or trusses in the Exodus database, with a
corresponding block section in the Sierra/SD input deck. No material is required. A
block may contain Any number of connected or disconnected Rrod elements. The following
is an example of the input file specification for an Rrod if the Exodus database contains
beams in block id=99.

block 99
Rrod

end

6.28. Rbar

An Rbar is a pseudoelement which is infinitely stiff in extension, bending and torsion. The
constraints for an Rbar may be summarized as follows.

1. the rotations at either end of the Rbar are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

The Rbar is specified using beams or trusses in the Exodus database, with a
corresponding block section in the input file. No material is required and any number of
connected or disconnected Rbar elements may be placed in a block. The following is an
example of the input file specification for Rbar elements if the Exodus database contains
beams in block id=99.

block 99
Rbar

end

Rbar elements can be reordered so that the number of them connected to a single node is
minimized. Having a large number connected to the same node results in a populated
matrix and a slow computation. Therefore, reducing the number of connections can
shorten run time. (see the reorder_Rbar parameter in the parameters Section 3.3).

The Rbar attributes are listed in Table 6-110, and are described below.

314

Attribute default description
RB_ID - translation identifier

CID_FLAG_INDEP 123456 independent coordinate flag
CID_FLAG_DEPEND 123456 dependent coordinate flag

Table 6-110. – Rbar Exodus Attributes.

RB_ID Sometimes a collection of Rbars is a description of a rigid body. This occurs for
example when translating a NASTRAN model containing RBE2 elements. During
translation these bars are grouped into rigid bodies based on their connectivity. The
RB_ID is an index to that grouping.

CID_FLAG_INDEP By default, all degrees of freedom are active on both nodes of the
Rbar. Independent dofs are activated on the first node. The “CID_FLAG_INDEP”
allows control over which degrees of freedom are activated. The flag is specified as an
integer which is sum of components. 2

100000 X degree of freedom
20000 Y degree of freedom
3000 Z degree of freedom
400 Rx degree of freedom
50 Ry degree of freedom
6 Rz degree of freedom

Thus, ‘123456’ activates all dofs, and ‘123000’ activates only translations.

CID_FLAG_DEPEND By default, six dofs are eliminated from the bar. By setting this
attribute to a non-default value, constraint equations may be skipped. The values are
the same as the “CID_FLAG_INDEP” described above.

6.28.1. Interaction of Rbars

If two Rbars or sets of Rbars share a node then they are effectively merged into a single
rigid set. E.g. if an Rbar connects nodes 1 and 2, and another Rbar connects nodes 2 and
3 then the effect is the set of nodes 1, 2, and 3 act as a single rigid set of nodes. The same
rule applies to intersection of rigid sets 6.34 or the intersection of Rbars and rigid sets as
the rigid set capability is effectively a means to automatically generate Rbars.

6.29. RBE2

Sierra/SD has no support for the NASTRAN RBE2 element. However, in most cases the
RBE2 element is not that different from a collection of Rbar rigid elements.

2It is an unusual descriptor, but it was designed to somewhat mimic the NASTRAN cid flag.

315

6.30. RBE3

The RBE3 pseudo-element’s behavior is taken from the eponymous NASTRAN element.
More detail is found in the Theory Manual section Sierra/SD Elements subsection Rigid
Elements subsubsection RBE3

The element is used to apply distributed forces to many nodes while not stiffening the
structure as an Rbar would. The RBE3 uses the concept of a reference node.

Because all the nodes in an RBE3 are not equivalent, each RBE3 requires its own block ID.
In the Exodus file, all links connecting to a single RBE3 are defined in a single element
block. The input file then specifies that this is an RBE3 element block, as shown in the
example below. If the model requires many RBE3 elements, a separate block must be
specified for each.

Usage The optional parameters for the RBE3 pseudo-element are shown in the table
below. These parameters must be specified in the input file, not as attributes of the
Exodus file.

Keyword value Description
refc string reference node coordinates
WT 6 reals relative weight of coordinates

refc The REFC parameter sets the degrees of freedom to activate on the reference node. For
instance REFC=’12’ activates equations that constrain degrees of freedom associated
with X and Y translations. No other degrees of freedom are affected. If the REFC
keyword is not provided, it defaults to REFC=‘123456’, i.e. constraint relations will
be provided for the 6 structural degrees of freedom on the reference node.

WT. The contributions of each of the coordinates of the independent nodes may be scaled
by WT. Most typically this would be used to determine the relative weight of
rotational degrees of freedom on the independent nodes to the computation of the
reference node rotations. The default value is WT= 111000 which means that the
rotations do not contribute to the RBE3.

Generally we recommend that there be no contribution from the rotations. The
rotation of the element may then be determined solely from the translational degrees
of freedom on the independent nodes.

The formulation of the RBE3 is based directly on the published method from
MSC/NASTRAN. Details of the method are described in the Theory Manual section
Sierra/SD Elements subsection Rigid Elements subsubsection RBE3.

316

Cautions in using RBE3 Albeit convenient, the RBE3 is not a true element. It can
introduce complexity in the solution.

• A RBE3 may connect a large portion of the model. This degrades linear solver
efficiency. As a consequence, convergence may be slow.

• A RBE3 connected to many nodes requires a lot of memory. This memory is stored on
a single processor.

• No two MPCs should be linked together. Linear solvers may fail in this case.

• Accelerations (see Section 7.1.3) cannot be prescribed on an RBE3 or any other MPC.

• The element has no logic to determine which degrees of freedom of the independent
nodes are active. Thus, if you specify WT = 111111 the element will try to
determine its rotation based on a combination of the translational and rotational
degrees of freedom on the independent nodes. If the rotational degrees of freedom are
inactive, they are treated as zero. This is rarely what is wanted.

• Care must be taken to ensure that only one node of the RBE3 has multiple connections
to its links. Further, every link in the RBE3 must be connected to the reference node.

• A Joint2G with side averaging uses two RBE3 elements.

• Many user issues are caused by RBE3 elements.

Example RBE3 The following is an example of the input file specification for an RBE3 if
the Exodus database contains beams in block id=99.

block 99
RBE3
refc=123456
wt=1 1 1 0 0 0

end

317

6.31. Superelement

Keyword value default Description
file string input file containing matrices
format string netcdf format of superelement input file:

netcdf or DMIG
savememory yes/no no controls storage of matrices in mem-

ory
diagnostic integer 1 0 - run no diagnostics, 1 - compute

Kr * RBM,
2 - compute eig(Kr,Mr)

map integer table of node/cid pairs
map string “ascending_id” or “sorted” or “loca-

tions”
skip_output yes/no option to disable netcdf output
sensitivity_param integer/real parameter index and value of sensi-

tivity
parameter may
be

used multiple times to specify different pa-
rameters

A superelement is an abstract concept with different realizations in commercial codes.
Sierra/SD does not support a full automatic superelement capability. The Sierra/SD
Craig-Bampton reduction 4.4 reduces an entire model to a reduced-order model. Importing
a reduced model (or superelement) into Sierra/SD is also supported, typically using
mksuper. Sierra/SD supports superelements that can import of a mass and stiffness
matrix into a full system model. This linearized approach may be used in any type of
analysis.

Evaluating the suitability of a superelement approximation is left to the user; tutorials are
available in the Example Problems Manual.41

Limitations

• The superelement must be small enough (have a sufficiently small number of degrees
of freedom) to fit (in the virtual memory) a single MPI rank. No consideration for
superelements which span processors is made.

• Nodes on the superelement interface may be shared across processors. Interior
degrees of freedom are local to a single processor.

• Output of the interface node degrees of freedom will be made in the base model in
the usual way. Output of internal superelement quantities will be made in the
superelement database file. The superelement modal degrees of freedom will be
stored in the Exodus and MATLAB output on the X-degree of freedom of newly
created virtual nodes.

318

• No automatic data recovery is available.

• Only a single level of superelement is supported.

• The mass properties report is computed by lumping mass to the interface dofs. For a
superelement formed from a free-free system this will preserve the total translational
mass of the superelement. However, the rotational inertia and center of gravity will
not be exactly preserved in the superelement mass properties. If the superelement
has an internal constraint or if for other reasons the superelement cannot exactly
reproduce rigid body modes then the translational mass properties will not
necessarily be preserved by the superelement.

• No geometric stiffness effects are currently accounted for in superelements. The
default at this time is for these elements to return zero geometric stiffness.

User Input

The following input is provided by the user. If format=DMIG, the connectivity information
is read from the DMIG file, and cannot be specified in any other way.

connectivity (Exodus): Note that codes such as NASTRAN input superelements by
connecting to the nodes directly. Like any element with Sierra/SD the superelement
must be mapped to a single processor. The superelement must be in the finite element
database used to partition the elements. To provide the geometric connectivity to the
model, the connectivity must be added to the Exodus file in one way or another.

If the superelement has the same number of nodes as a standard element, the analyst
may choose to use such an element to provide the connectivity. This can facilitate
visualization of the model. Sierra/SD does support an element with more nodes
than required for the connectivity map. Thus, a Hex-8 could be used to define the
connectivity for a superelement with 7 nodes on the interface. The connectivity map
cannot have more nodes than the element.

The mksuper utility function will add a superelement to an Exodus database.
See.41

connectivity map (Exodus): The equations for the system matrices must be associated
with the nodes and degrees of freedom in the model. The following example creates a
map for an eight degree of freedom reduced order matrix. The first column of the
map is associated with the node index in the element. The second degree of freedom
defines the coordinate direction (typically 1 to 6 for x, y, etc).

// node cid
map 0 0

0 0
1 1
1 2

319

1 3
2 1
2 2
2 3

In this example, the first two rows of the system matrices are associated with internal
degrees of freedom (DOFs) such as fixed interface modes. These interior dofs are
indicated by a zero for both the node index, and the coordinate direction. Row 3 of
the matrix is associated with the first node in the element connectivity, and with the
x coordinate direction. Row 8 is associated with the second node, and the z
coordinate direction.

There must be exactly as many rows in the connectivity map as there are rows in the
system mass and stiffness matrices.

If the node index is negative, the row of the matrix associated with that degree of
freedom will not be mapped to the system matrix. This can be used to “clamp” a
generalized degree of freedom.

The node index is not the node number in the Exodus file. It
is the index into the element connectivity. Thus, for a four node
element, the index must never exceed 4. This permits the use of
gjoin and other tools without the need to reorder these terms in
the input file.

Alternate formats may be used to provide the map between rows of the system
matrices and degrees of freedom of the residual structure. For these alternate formats
to be used, the netcdf file containing the superelement data must include the cbmap
data, which provides an internal mapping between internal rows and columns and the
internal nodes. These methods include the following.

map ascending_id or sorted If the user specifies the node number connectivity of
the superelement in an ascending node order, then we can automatically
generate the map. 3 Note, either ascending_id or sorted may be used here, they
refer to identical algorithms.

map locations If the nodal coordinates of the superelement are stored in the netcdf
reduced order model file, then the best match among coordinates of the residual
and the superelement can be used to determine the map. This method works
best if the superelement and residual have the same coordinate locations and if
there are no collocated nodes in the interface. Each superelement interface node
will be mapped to the closest finite element model node. No search tolerance is
needed as the closest node is always found, even if it is far away. However, when
using this option care should be taken that superelement interface nodes and

3With the mksuper application, it is easy for the user to set up an element with ascending order, but most
tools do not know how to visualize the element. Visualization may be easier using standard elements,
but the the restriction that the connectivity have ascending node ids is confusing.

320

finite element nodes match in space. If a superelement interface degree of
freedom is mapped onto a finite element node with significantly different
coordinates the superelement behavior may be substantially degraded and the
superelement may no longer be able to represent rigid body modes. A warning
is emitted by Sierra/SD if a node match cannot be found within a distance of
one one-millionth of the characteristic model size.

system matrices: The system matrices may be provided in a netcdf or DMIG file. These
matrices are available as output of the CBR reduction process (Section 4.4) and may
also be generated with other tools such as Nasgen. The file must contain the
following.

Kr. The reduced stiffness matrix. This is required for all analysis.

Mr. Most analyses require a reduced mass matrix as well. Its dimension must match
that of the stiffness matrix.

Cr. An optional reduced damping matrix may be used. It must be of the same
dimension as Kr.

maps that connect the degrees of freedom of the superelement to the degrees of
freedom of the residual structure.

An accurate reduced Kr for 3D analysis should have exactly 6 zero energy modes. It
must be symmetric (Sierra/SD will try to symmetrize it). Typically, Mr would be
non-singular. Failure to meet these requirements can confuse the entire solution
procedure, and lead to erroneous solutions.

transfer matrices (Exodus): Output of results on interior points in the superelement are
facilitated using optional output transfer matrices (OTM). These are described in the
section on Craig-Bampton reduction (4.4). These matrices are written to the output
Exodus file only if superelement output is requested in the Craig-Bampton
reduction output specification. The following matrices apply.

OTM Nodal output transfer matrix.

OTME Element output transfer matrix.

OutMap An optional node map for the OTM.

OutElemMap An optional element number map for OTME.

skip_output: Optionally provides a means of disabling all output to the netcdf results
files. This is particularly useful if the analyst wishes to use the same netcdf data for
multiple superelements in the model. Without this keyword, each of these
superelement blocks would be writing to the same file location, resulting in corrupted
data.

321

output specifications: In the input deck superelement output is selected from either the
outputs or echo sections by adding the word superelement.

If requested in the outputs section, then a new Exodus file will be generated from
the information and name of the netcdf file. The number of nodes in the new file is
the sum of the number of nodes on the interface and the number of nodes in the
OTM. The number of elements is the number of elements in the OTME. All elements
will be placed in a single element block.

Because we don’t know the connectivity of the elements in the OTME, all such
elements will be defined as sphere elements, and will be collocated on a single node in
the model. This impedes visualization, but the element data is preserved for other
types of post-processing.

Likewise, no coordinate information is available for the interior nodes of the model.
These elements will be located at the origin of the system.

sensitivity_param: If the Craig-Bampton reduction that generated the superelement
included a sensitivity analysis, then the netcdf file containing the superelement
matrices also contains derivatives of the reduced matrices with respect to the
parameters. This information can then be used in the superelement block to set the
superelement parameters as needed. This uses the linear Taylor series expansion of
the sensitivity information of the Craig-Bampton model to compute the updated
reduced matrices, and thus by-passes the need re-generate the Craig-Bampton model
when the parameters are perturbed. The sensitivity_param allows the user to
input specific values of the parameters for the superelement.

The above parameters are entered in the block section of the input file. For example,

block 10
superelement
file=’example.netcdf’
// node cid
map 0 0

0 0
1 1
1 2
1 3
2 1
2 2
2 3

diagnostic=1
sensitivity_param 1 0.01 // thickness in CBR shell model
sensitivity_param 2 30e6 // modulus in CBR shell model

end

322

In this case, there are two sensitivity parameters, one for the thickness of a shell block in
the Craig-Bampton model, and the other for the Young’s modulus in that same block. Note
that the format is assumed to be netcdf because the keyword format is not specified.

DMIG Input Files

Matrix Acceptable Names
Stiffness (Kr) K2GG,KAAX
Mass (Mr) M2GG,MAAX

Damping (Cr) C2GG,BAAX

Table 6-111. – Acceptable names of matrices within DMIG input files.

• Sierra/SD does not check the file extension of DMIG input files. Files generated
by Sierra/SD use the .dmig extension, whereas direct output from NASTRAN uses
.pch. Both are acceptable as input.

• Allowable matrix names are listed in Table 6-111.

• Information required by Sierra/SD in parsing DMIG files comes from the matrices
themselves: all comments are ignored, including e.g., those providing information
about the dof map, number of interface modes, etc.

• The stiffness damping matrix K4AXX is ignored.

Finally, we show an example input deck for DMIG format:

block 32
superelement
format = DMIG
file=rom4.dmig

end

6.32. Dead

A dead element has no mass and no stiffness. It may be of any dimensionality, solid,
planar, line or point. Interior nodes to a block of dead elements will not be included in the
computation of the model. There are no parameters for dead elements.

Note that for sideset-based load and boundary conditions, the boundary condition sideset
is defined by sides of elements. If an element block is marked dead, then the boundary
condition on the sides of those elements will generally also be deactivated. Special
attention needs to be given to any sideset that is on the internal boundary between a dead
block and an active block. Deactivation of the dead block may deactivate the boundary
condition on that internal sideset if the sides are associated with the dead elements. In

323

visualization tools the sideset normal will point out of the element it is attached to.
Visualization of the sideset normal can be helpful to determine which block the sideset is
attached in ambiguous internal sideset cases. As a general rule it is recommended that use
of internal sidesets be avoided due to the model ambiguity they can cause.

6.33. Compatibility of SD/SM Elements

Some default Sierra/SM element formulations differ significantly from the corresponding
Sierra/SD formulations. Thismeans that on a coarse mesh these elements may produce
different results for a nominally equivalent problem. Additional inconsistencies may result
from the hand-off of Sierra/SM state via the receive_sierra_data section 4.24 solution
case. For example an equilibrium state in SM may not be a SD equilibrium state.

On the other hand, some Sierra/SM element formulations types are identical to the
corresponding SD formulations, including fully integrated formulations such as the Tet4,
Hex20, and fully integrated Hex8 element (hex8f in SD, fully_integrated in SM). A fully
integrated Tet10 behaves slightly differently in SM than SD due to the SM default volume
averaging behavior. The selective deviatoric element are identical: SD hex8u and SM
selective_deviatoric. A ’Nquad’ shell element in Sierra/SM is identical to a ’Nquad’ in
Sierra/SD, but all other shell elements differ. One SM shell element formulations nearly
matches the ’Nquad’ formulation, the ’BL_SHELL.’

Note, even when using equivalent element formulations full equivalency between SD and
SM only holds at very small strain and small deformation. At larger deformations SD and
SM results will diverge due to geometric non-linearities, differences in strain measures, and
other linear vs. non-linear effects.

See the SD Verification Manual43 for additional information on these topics.

6.34. Rigidset

Rigid Sets are intended as a usability tool to permit the analyst to treat a set of nodes as
completely rigid. The input is straightforward.

Rigidset set1
sideset 1
sideset 2:5
nodeset 88-90, wing

END

The above definition would establish a single set that is tied together. For purposes of error
reporting only, the name “set1” is associated with this example set. If multiple independent
sets are required, then multiple rigid set definitions may be made.

324

Table 6-112 shows the parameters. Any number of rigidset sections may be introduced.
Each acts independently. Exodus sideset or nodeset information may be included in the
definition. The rules for defining multiple nodesets, sidesets, or blocks at once are the same
as the history output Section 8.4.

Table 6-112. – Rigidset Parameters.

Parameter type description
sideset int/name/list sideset id
nodeset (not recommended) int/name/list nodeset id
CenterNode tiedto node integer see below

Tied Node tied node or center node A rigid set can be attached to a Tied Joint 6.36
or Joint2g 6.21. In this case, a “reference” node may be generated and tied to another
block or element. This is accomplished with the keywords below.

CenterNode tiedto node XX block YY

The CenterNode command will create a bar element with two nodes, and associate it with
block YY. One end of the bar element is node XX. Node XX must exist in the input mesh.
The other end node of the bar element will be created on the fly at the centroid of the rigid
set. Note this capability only works for blocks with a single element. There are examples
in.41 Figure 6-49 illustrates the concept.

RigidSet

Reference Node − physical

Virtual Block

CenterNode − virtual

Figure 6-49. – Rigidset/TiedJoint Centernode Connection. The model illustrates the con-
nection of a physical rigid set to a physical reference node via a virtual center node and virtual
connection block.

6.34.0.1. Voltage Rigid Sets For many models using piezoelectric materials, a free
surface of the piezoelectric tile may be plated with a purely conductive material such as
copper. The conductive layer results in an equipotential surface. To simplify modeling an

325

equipotential surface, Sierra/SD enables voltage rigid sets, which enforce a spatially
constant voltage on the nodes associated with specified nodeset or sideset. Specifying
voltage rigid sets are done in the rigid set block as shown in the following.

RIGIDSET unique_identifier
sideset 1
voltage
END

Input 6.13. Voltage Rigid Set

6.34.0.2. Limitations Rigidsets meet an important need to tie many nodes together.
Generally they are much more robust than generating collections of Rbar rigid elements or
other rigid elements. However, it is easy to generate redundant constraints through this
input. Redundant constraints cause most linear solvers to fail, and Sierra/SD may not
always provide diagnostics. Generally,

1. Rigidsets should be completely disjoint, i.e. should share no common nodes. If two
rigid sets do share any node they are effectively merged as a single larger rigid set.

2. If a Rbar is connected to any node of a rigid set then effectively the combination of
Rigid set and connected Rbars behave as a single rigid system. Similarly, connecting
two rigid sets via a Rbar effectively merges the two sets into a single larger rigid set.

3. None of the nodes in the rigid set should be constrained (as through a boundary
condition).

4. While nodesets can be used to define rigid sets, this is not recommended because
parallel decompositions may put only one or two nodes on a processor. So few nodes
may introduce local singularities in rotation that impact the linear solver. If possible,
use a sideset to define the rigidset.

6.35. Rrodset

Like the rigidset of Section 6.34, the Rrodset provides a convenient means of tying
together a surface. All the limitations of the rigid set apply here. Unlike the rigid set, the
Rrodset constrains only the distance between nodes on the faces, and no rotational degrees
of freedom are constrained. The Rrodset acts much like a Kevlar skin; it resists stretching,
but does not impede bending.

For a quadrilateral face, the Rrodset is equivalent to applying a rigid rod to each of the
edges of the face. A constraint is also placed across one of the diagonals of the face as
shown in Figure 6-50. An example is shown below.

326

Rrodset
sideset 5

END

Figure 6-50. – Rrodset Constraints. The black lines indicate the edge of the element. Red
lines are corresponding linear constraints.

Like the rigidset, the Rrodset may be used to connect a “reference” node to a block.

6.36. Tied Joint

The Tied Joint models a joint structure. At the heart of the Tied Joint is an Iwan model.
The Tied Joint supports flexibly mixing many models. An Iwan element may be used to
represent the shear response, and multipoint constraints may be used to represent the
normal response. Energy loss of the joint can be approximated by the Iwan element, and
normal surfaces alignment can be preserved by the constraints.

6.36.0.1. Input Specification Refer to Figure 6-51 for reference to the model definition.
An example input is shown in input 6.14. There are several sections to the model
definitions. Parameters of the input are summarized in Table 6-113. Details are below.

Figure 6-51. – Tied Joint Geometry. The two side set surfaces are shown separated for clarity.
A virtual element is created which connects only the shear components of the joint. Normal
components are interconnected using Tied MPCs.

Tied Joint
Normal Definition = slip
surface 3,5

327

connect to Block 11 // Joint2g block
End

// definitions for the referenced Joint2g
Block 11

Joint2g
Kx=Iwan 1
Ky=Elastic 1e6
coordinate=5 // for anisotropic shear parameters

End

Input 6.14. Tied Joint Example

surface 2 sidesets connected by the joints, in slip
constraints the first sideset is the face-surface
and the second the node-surface as in tied data

tied nodes a sideset connected by the joint, the face-surface
in slip constraints as in tied data

tied faces a sideset connected by the joint, the node-surface
in slip constraints as in tied data

normal
slip|none if slip, normal-only node-face constraints

search_tolerance if slip, defines node-face MPCs
edge_tolerance if slip, defines node-face MPCs

shear
connect to block reference block for whole joint

side average, rigid or Rrod

Table 6-113. – Tied Joint Parameters.

Name: Optional name of this joint. Useful primarily in diagnosing error messages.

Surface: Exactly two sidesets should be provided, these two sidesets will be connected via
the joint. For node-face MPCs involved in normal direction constraints the nodes of
the second surface (node-surface) are constrained to the faces of the first surface
(face-surface)

Normal Definition: In the Tied Joint, the joint behavior in the normal direction can be
governed by the joint element or by distributed node-face MPCs on the sidesets.

Slip implies the surfaces will remain in tied contact, and shear effects are managed
by the “shear definition”. Tied node-face constraints will be created similar to
the Tied Data 9.1 command. These constraints only tie the normal deformation
of the sides together. The shear behavior of the joint will be managed by the

328

single joint element. In this case, the joint element will be located at the nearest
node to the centroid of the node-surface.

None implies that no specific node-face normal constraints will be generated.
Surfaces may separate or interfere and the joint normal behavior will be
controlled only by the whole-joint element. In this case, the joint will be located
at the centroid of the node-surface.

Connect to block: A reference to a block containing parameters for the whole-joint
element, a single element that connects the two sides of the joint. Usually a Joint2G
element is used. If the normal definition is none, then the whole-joint element must
specify behavior in all six dofs. Otherwise, if the normal definition is slip, then tied
constraints are used to constrain the normal motion of the joint and only the three
dofs associated with plane motion in the whole-joint element are used.

For non-isotropic shear behavior, the block may include a coordinate command. The
frame may be curvilinear (e.g. cylindrical), in which case whole joint quantities are
evaluated at the centroid of the surfaces (see coordinates, 3.7). To reference the basic
(or default) frame, use coordinate frame “0”. The coordinate frame is specified in the
connected element frame.

For curvilinear coordinate frames, it may be difficult to exactly specify the
orientation of the centroid of the surface. Any user defined coordinate frame will be
projected to the plane of the surface at the centroid, and a new coordinate frame is
generated for specification of the orthogonal, in-plane coordinates. The X̃ and Ỹ
axes of the user-defined coordinate system are projected to the plane, with the new
third axis (Z̃ ′) in the normal direction.

In the case when the whole-joint element is a Joint2G element, the shear_axis can
be used in the block definition to define the coordinate direction used for the first in
plane constitutive component. We refer to Figure 6-52 for a description of the local
coordinate system used to specify the constitutive behavior of the Joint2G element.
The surface normal, n, is obtained as the normal on the node that is closest to the
centroid of the sidesets that define the Tied Joint. This normal direction defines the
Z̃ ′ axis of the local coordinate system. The shear_axis definition specifies which of
the 3 axis of the user-specified coordinate system (in this example coordinate 5) is
intended to be the first shear direction for the constitutive response. Thus, if
shear_axis is set to 1, then X̃ ′ is defined as the part of the X̃ axis from the
user-defined coordinate system that is orthogonal to Z̃ ′ = n. If the Z̃ axis of the user
specified coordinate system lines up exactly with the normal at the node, then the
shear direction will be in exactly the same direction as the X̃ axis in the user-defined
coordinate system. Generally, they will not line up perfectly, and this is the main
reason why the shear_axis is needed. Once Z̃ ′ = n and X̃ ′ are defined, the remaining
component of the coordinate system Ỹ ′ can be obtained by a cross product.

Side: The side defines additional constraints on the surfaces and how the tied joint
Joint2G element spreads load to the surfaces.

329

n

X̃′

X̃

Figure 6-52. – The surface normal, n, is defined by the normal of the surface at the centroid
point. The shear axis direction (in this example X̃) is projected onto the surface as X̃ ′.
Together, X̃ ′ and surface normal provide the basis for the generated coordinate frame.

A tied joint is between two surfaces A and B. To create the tied joint first a point in
space is selected near the centroid of the joint. Next two new collocated nodes Ac
and Bc are created at this point. Node Ac will track the average displacement of side
A. Node Bc will track the average displacement of side B. The whole joint element, a
Joint2G, is connected between nodes Ac and Bc and controls the stiffness and
damping of the joint.

average See Figure 6-53. Ac and Bc are connected to side A and B via RBE3
constraints. One RBE constrains node Ac to have the average displacement of
side A and another RBEs constrains node Bc to have the average displacement
of side B. The RBE3 constraints are added as bar elements to the output mesh
file. Side average is the default for “normal definition” of “slip”.

rigid provides a means of constraining all the nodes on each surface to move together
as a rigid set (see users 6.34). See Figure 6-54. Side A is turned into a rigid set
and side B is turned into a rigid set. Node Ac is added to rigid set A and node
Bc is added to rigid set B. An RBE3 is not required in this case as the rigid set
already guarantees that the displacement at Ac and Bc track the average
displacement of the sides. Side rigid is default for “normal definition” of “none”.

Rrod provides a means of constraining all the nodes on the surface to move together
as a Rrodset (see users 6.35). See Figure 6-55. Side A is turned into a Rrodset
and side B is turned into a Rrodset. As with side=average RBE3 constraints
are needed to constrain nodes Ac and Bc to the average displacement of the two
sides. The RBE3 constraints are added as bar elements in the output mesh file.

The side rigid option will create the stiffest overall joint behavior, average the softest, and
Rrod something in between. Using option rigid to avoiding a complex RBE3 constraint
can also avoid numerical issues that sometimes come with the average or Rrod options.

Not all Tied Joint specifications are fully consistent. In particular, the specification of the
“normal definition” and the “side” descriptions are not fully independent. Table 6-114
summarizes some dependencies between these two parameters.

330

Figure 6-53. – Construction of tied joint with side=average.

Figure 6-54. – Construction of tied joint with side=rigid.

Figure 6-55. – Construction of tied joint with side=Rrod.

331

Normal Definition Side Status
none average RBE3s constrain joint end nodes to have

the average displacement of each surface.
Rrod RBE3s constrain joint end nodes to have

the average displacement of each surface.
Additionally, each surface is turned into an
Rrodset.

rigid Each surface is turned into an rigid set
which also contain the joint end nodes. An
RBE3 is not needed in this case as the rigid
set already constraints the joint end nodes
to have the average displacement of the
surfaces.

slip average Node-face normal only constraints are
added to the surfaces. RBE3s constrain
joint end nodes to have the average dis-
placement of each surface. The shear de-
formation of the whole-joint model is based
on the relative lateral motion of each side.

Rrod Node-face normal only constraints are
added to the surfaces. RBE3s constrain
joint end nodes to have the average dis-
placement of each surface. Rrod con-
straints stiffen the surface. The shear de-
formation of the whole-joint model is based
on the relative lateral motion of each side.

rigid Invalid. Overly constrained joint. Fatal error.

Table 6-114. – Tied Joint, “Normal” and “Side” dependencies.

332

Output Specifications Because the Tied Joint is not fully represented in the Exodus
database (except as a collection of surfaces), standard element output capabilities are
insufficient to represent the data. The data is divided into two categories: configuration
and results.

6.36.0.2. Configuration Output The configuration output is only available in the text
output of Sierra/SD, i.e. in the .rslt file. It is requested with the keyword
“input_summary” in the “ECHO” section (see 8.8). This includes the following.

1. The type of the normal enforcement.

2. Surface information.

3. Centroid of the surface pairs (if applicable).

4. Owning processor for the shear elements (if applicable).

5. Shear models.

Results Output The only results output that is currently available for a Tied Joint
consists of the forces in the Joint2G element that connect the two surfaces of the Tied
Joint together. Currently, these forces can be only obtained in the history (or frequency)
file for a transient or nonlinear transient analysis. They cannot be written to the global
Exodus output file. If we consider the same example that is given in input 6.14, we could
obtain the element forces as follows for a transient analysis

History
block 11
EForce

end

or, for a frequency domain analysis,

Frequency
block 11
EForce

enD

where in this example block 11 is the Joint2G block that connect the two surfaces of the
Tied Joint together.

333

7. Boundary Conditions and Initial Conditions

7.1. Boundary conditions

Boundary conditions are specified within the boundary section. Node sets, side sets,
blocks, or node lists may be used to specify boundary conditions. The rules for defining
multiple nodesets, sidesets, or blocks at once are the same as the history output section,
8.4, and also follows the rules for integer lists detailed in Section 3.1. Specialized
coordinate systems that can be used are described in section 3.7. The example in input 7.1
illustrates the method.

sideset 5 // for nodes in sideset 5
absorbing // use an absorbing bc

sideset 2 // for the acoustic sideset 2
p = 0 // fixed acoustic pressure

// (pressure release condition)

sideset acoustic_surface // for sideset "acoustic_surface"
pdot = 1.0 // constrain the time derivative

// of acoustic pressure for
// enforced accelerations

function = 2 // varying in time with function 2
p0=1.0 // and initial condition p0 = 1.0

sideset 6 // for sideset 6
impedance_pressure=0.5 // use a pressure impedance bc
impedance_shear = 0.5 // and a shear impedance bc

sideset 7 // for sideset 7
slosh = 0.6 // use a slosh bc

sideset 8 // for sideset 8
infinite_element // use infinite elements
use block my_block // where the infinite element

// parameters are in the
// user-defined block "my_block"

sideset piezoelectric_side // for "piezoelectric_side"
V = 0 // fixed voltage

// (electrical ground)

Input 7.1. Sideset

334

boundary
nodeset end_nodes // for nodes in nodeset "end_nodes"

x = 0 // constrain x=0
coordinate 1 // for x/y/z in coord system 1

nodeset 1 // for nodes in nodeset 1
x = 0.1 // constrain x=0.1
y = 0 // and y=0
RotZ = 0 // and the rotational dof about Z

nodeset 13:15, widget // for nodesets 13-15 and "widget"
accelx = 0.3 // constrain the x-acceleration
function=1 // varying in time with function 1
disp0 = 0.1 // and initial condition
vel0 = 0.2 // disp0 = 0.1*0.3 and vel0 = 0.2*0.3

Input 7.2. Nodeset

block fixed_block // for nodes in block "fixed_block"
fixed // constrain all dofs

node_list_file=’nodes.txt’ // for nodes in the file "nodes.txt"
fixed // constrain all dofs

end

Input 7.3. Block or Node List

The descriptors for the displacement boundary conditions are, X, Y, Z, RotX, RotY, RotZ, P,
and fixed. Their application and meaning are listed in Table 7-115. An optional
equals sign separates each descriptor from the prescribed value. The value fixed implies a
prescribed value of zero for all degrees of freedom.

Note however that the syntax checking in the boundary block does not check for duplicate
boundary conditions, and silent failures are possible. For example in the example shown in
input 7.4, part of the input block is silently ignored.

335

Keyword Description
prescribed displacement keywords

X X Component of displacement
Y Y Component of displacement
Z Z Component of displacement

RotX Component of Rotation about X axis
RotY Component of Rotation about Y axis
RotZ Component of Rotation about Z axis
fixed Constrain all components of rotation and translation
P Acoustic pressure
V Voltage

prescribed acceleration keywords
AccelX scaling factor on X component of motion
AccelY scaling factor on Y component of motion
AccelZ scaling factor on Z component of motion

RotAccelX scaling of rotational motion about X axis
RotAccelY scaling of rotational motion about Y axis
RotAccelZ scaling of rotational motion about Z axis
AccelV second derivative of voltage
disp0 initial displacement
vel0 initial velocity
Pdot derivative of acoustic pressure
P0 initial acoustic pressure

prescribed displacement keywords (directfrf-only)
DispX scaling factor on X component of motion
DispY scaling factor on Y component of motion
DispZ scaling factor on Z component of motion

RotDispX scaling of rotational motion about X axis
RotDispY scaling of rotational motion about Y axis
RotDispZ scaling of rotational motion about Z axis
FreqV scaling factor on voltage
FreqP scaling factor on acoustic pressure

Table 7-115. – Dirichlet Boundary Enforcement Keywords.

336

Boundary
nodeset 10 // This

rotx = 0 // is
roty = 0 // parsed
rotz = 0 // as

nodeset 10 // expected
accelx=370.
function=1
accely=380. // Parsing
function=2 // silently
accelz=390. // ignores
function=3 // these!

end

Input 7.4. Example Silent Failure of Parsing

In order to apply functions 2 and 3, it is necessary to provide a nodeset for each function as
in input 7.5.

Boundary
nodeset 10 rotx = 0 roty = 0 rotz = 0
nodeset 10 accelx=370.0 function=1
nodeset 10 accely=380.0 function=2
nodeset 10 accelz=390.0 function=3

enD

Input 7.5. Corrected syntax

The way that the parser works for the boundary block is that the text is divided up into
consecutive chunks by the keywords nodeset, sideset, block, node_list_file, and end.
This is the pattern followed in input 7.1. Within each chunk, any number of Dirichlet
boundary enforcement keywords (see Table 7-115) may be provided. Surprisingly, only the
first function in a chunk is parsed; any others are ignored. There is no warning for ignored
text in the boundary block at this time.

7.1.1. Prescribed Displacements and Pressures

In linear statics, one may prescribe a nonzero displacement by entering a value following
the coordinate direction, as shown in input 7.6.

337

Boundary
nodeset 1

x = 3
y = 0
z = 0
rotx = 0
roty = 0
rotz = 0

end

Input 7.6. Prescribed Displacement for Statics

For acoustics, pressures may be fixed by specifying p= 0, as in Table 7-115 on sideset 2.
This corresponds to a pressure release condition.

For linear statics, there must be no function entry following the entry. Prescribed
displacements have the same limitations as prescribed accelerations described in the next
section. The load in this case is introduced by the prescribed displacement. However, the
loads section must exist (for error checking purposes) even if it is empty.

7.1.2. Prescribed Voltage

For electro-mechanical coupled physics problems, constant voltage boundary conditions
may be specified on nodesets or sidesets using the keyword V in the Boundary block. In the
following example, electrical grounds were set at sideset 1 and nodeset 1, and a non-zero
constant voltage boundary condition set at sideset 2.

Boundary
sideset 1
V = 0
nodeset 1
V = 0
sideset 2
V = 2

end

Input 7.7. Prescribed Voltage

338

7.1.3. Prescribed Accelerations

In transient dynamics, the acceleration on a portion of the model may be prescribed as a
function of time. As shown in Table 7-115. acceleration are specified using accelX,
accelY, accelZ, RotaccelX, RotaccelY, RotaccelZ, disp0, vel0, Pdot and accelV

A function must be used to apply the time-dependent boundary accelerations. Optional
initial displacement and velocity can also be specified; if not, they default to 0. In the
example above, the x acceleration of nodesets 13 through 15 and “widget” will be
prescribed as 0.3∗f(t), where f(t) is defined in function 1. The accelx factor also scales
the initial displacement and velocity. Thus, initial displacement is given as 0.1∗0.3 and the
initial velocity is 0.2∗0.3.

Prescribed accelerations are ultimately enforced in the code by integrating to produce a
prescribed displacement as

u(t) = scale factor∗
[∫ t

tstart

(∫ t

tstart
f(t)dt

)
dt+ (t− tstart)∗v0 +u0

]
. (7.1)

The start time of the function, tstart, is not the start time of the analysis. Accounting for
this is important in hand-off analyses. A function is required; not listing a function will
generate an error message. In the case of an acoustic sideset or nodeset, the prescribed
value is the first time derivative of acoustic pressure, denoted above as Pdot. This is
because, internally, Sierra/SD solves for the velocity potential, and the first time
derivative of the velocity potential is the acoustic pressure. Thus, by specifying the first
time derivative of pressure, one is prescribing the acceleration of the velocity potential.

An additional point to consider when applying prescribed accelerations is that the initial
velocity and displacement (denoted as disp0 and vel0), are also necessary to completely
define the boundary condition. These values account for the constants of integration
obtained when integrating the prescribed acceleration to obtain the corresponding velocity
and displacement on the sideset or nodeset. In the case of acoustics, only one initial
condition is needed (p0 which specifies the initial acoustic pressure), since only the first
time derivative of acoustic pressure is specified. In the case of prescribed voltage
acceleration, the descriptors disp0 and vel0 are used to define, respectively, the initial
voltage and initial time derivative of voltage. By default disp0, vel0, and p0 vanish.

There are some limitations with the prescribed acceleration capability, which are listed in
the following, and in Table 7-116. First, prescribed accelerations are not currently set up to
work with multicase solutions. Also, they only work in the standard (Cartesian) coordinate
system. Prescribed accelerations can be used in meshes that have nonlinear or viscoelastic
elements, as long as the prescribed accelerations are not applied directly to the nonlinear or
viscoelastic elements. Note that the nodes involved in prescribed accelerations cannot
coincide with nodes that are involved with MPCs.

Finally, note that when prescribed accelerations are used, they induce a load on the
structure. Thus, in many cases the loads section serves no purpose, unless an additional

339

external load is applied. In these cases, however, an empty loads block is still needed in
the input file. An error message will be generated if the input file has no loads section.

1. No support for multicase.

2. Only in basic coordinate directions.

3. Cannot be used on nodes attached to viscoelastic elements.

4. Cannot be used on nodes attached to nonlinear elements.

5. Cannot be used on nodes connected to rigid elements or MPCs.

6. Load section is required, even if empty.

Table 7-116. – Limitations for Prescribed Acceleration Boundary Conditions.

In the case of a prescribed voltage time history, the prescribed value is the second time
derivative of the voltage, i.e. voltage acceleration (accelV). However, since the first and
second time derivatives of voltage do not contribute to the equations of motion (see theory
reference for details) a prescribed voltage ’displacement’ option should typically be
used 7.1.4

7.1.4. Prescribed Displacement in Transient

Prescribed Displacement in Transient is currently BETA release.
Enable with the “- -beta” command-line option.

Similar to the transient acceleration capability 7.1.3, in direct transient analyses
time-history displacement boundary conditions may be specified with the keywords DispX,
DispY, DispZ, RotDispX, RotDispY, or RotDispZ paired with a function.

A voltage time history may be directly defined by keyword transV and a time history
function .

7.1.5. Prescribed Frequency-Varying Displacements

For the direct frequency response solution method, a portion of the model may be
prescribed displacements as a function of frequency. As shown in Table 7-115 the
descriptors for prescribed frequency dependent displacements are DispX, DispY, DispZ,
RotDispX, RotDispY, RotDispZ, FreqP, FreqV. A function must be used to apply the
frequency dependent boundary condition.

340

7.1.6. Node_List_File

To make it easier to apply boundary conditions, a node_list_file option is provided. In this
option, the user provides an additional text file that contains a list of global node ids
separated by white space. No comments, or other characters are allowed in the file, as
shown in input 7.1. The remainder of the boundary condition specifications are
unchanged.

There are several limitations place on collections of nodes specified in this manner.

1. This is an inefficient method of supplying the nodes. It is recommended that
nodesets or sidesets be employed when practical.

2. No node distribution factors may be provided.

3. The output Exodus file will have no record of this list.

4. The global node numbers are the mapped Exodus global numbers. This is the
arbitrary node numbering provided by the analysts, and may not correspond to the 1
to N ordering used by some other programs. 4

5. There is NO requirement that the nodes be sorted in the list, but repeating a node in
the list can have undefined results, i.e. don’t do it.

7.1.7. Nonreflecting Boundaries

Nonreflecting boundary conditions for acoustics and for elasticity may be specified using
the “absorbing” keyword.

This section allows the user to specify an exterior boundary for acoustic, elastic, or coupled
structural acoustic simulations. Once specified, first-order non-reflecting boundary
conditions are applied on this surface. The boundary is specified with a sideset. The
sideset can be placed either on acoustic or elastic elements. The code automatically
determines whether the sideset is placed on acoustic or elastic elements, and then applies
the appropriate boundary conditions.

Only pressure waves need to be absorbed for acoustic elements, and the absorbing
boundary could represent an infinite fluid surrounding a structure. For elastic waves both
pressure and shear waves need to be absorbed, and the absorbing boundary could represent
an infinite elastic medium, such as in a seismic problem.

An example of this syntax is given below.

Boundary
sideset 5

absorbing

4Earlier versions of Sierra/SD used the 1 to N ordering, where N is the maximum number of nodes in
the model. Current versions always use the mapped ordering for node references.

341

radius = 1.0
end

The parameter “radius” specifies the radius of the sphere that defines the absorbing
boundary. For a planar absorbing surface, one can either specify no radius, or a large
radius (the radius is equal to infinity for a planar surface). In those cases, the absorbing
boundary condition reduces to a plane-wave absorbing condition. We also note that the
radius parameter refers to the distance from points on the spherical surface to the center of
curvature, not to the origin of the coordinate system. Thus, it is independent of the
coordinate system that is specified. For example, one could shift the coordinates of the
nodes of the acoustic mesh by any constant, but the radius parameter would remain the
same.

7.1.8. Impedance Boundary Conditions

Impedance boundary conditions are partially reflecting and partially absorbing. Thus, they
are somewhere in-between a rigid wall and an absorbing boundary condition. They reduce
to these special cases for certain choices of the impedance parameters.

An example syntax for an absorbing boundary condition is given below

Boundary
sideset 6 // sideset on acoustic material

impedance = 0.5
sideset 7 // sideset on elastic material

impedance_pressure = 0.5
impedance_shear = 0.5

end

In this case, sideset 6 is attached to acoustic elements, and sideset 7 is attached to
elasticity elements. For acoustic elements, only one impedance parameter is needed, and it
corresponds to an impedance condition for pressure waves only (acoustic elements support
no shear waves). For elasticity elements, the impedance_pressure and
impedance_shear correspond to impedance for pressure and shear waves, respectively.
This example specifies that sideset 6 is to have an impedance of Z = 0.5ρc, where ρ is the
density and c is the speed of sound. Thus, the “impedance" parameter that is parsed in is
the multiplier on the characteristic impedance ρc. Similarly, for the elasticity element the
pressure and shear impedance would be ZP = 0.5ρcP and ZS = 0.5ρcS , where cP and cS are
the speeds of sound for the pressure and shear waves, respectively.

Currently, impedance boundaries are only set up to work with the standard characteristic
impedance ρc. Thus, specifying the “radius" parameter with an impedance boundary
condition will have no effect.

We note that if the impedance parameters are all set to 1.0, the problem reduces to the
absorbing boundary described in the previous section. If set to 0, the impedance condition

342

becomes a pressure-release boundary for acoustics and a free boundary for an elasticity
element. If set to a large number, the impedance boundary condition reduces to a
rigid-wall condition for acoustics, and a fixed condition for elasticity elements.

7.1.9. Slosh

Slosh boundary conditions are applied at free surfaces that are effected by gravity. This
type of free surface is typically only important on the surface of a liquid such as water. It
contributes to the mass matrix, resulting in “surface" wave modes.

An example syntax for an absorbing boundary condition is given below

Boundary
sideset 7

slosh = 0.102 // 1.0/9.8 (m/s^2)
end

This specifies that sideset 7 is to have a slosh boundary condition. In this case, the slosh
coefficient needs to be set to 1

g , where g is the gravity constant. Thus, for SI units, the
slosh coefficient is 0.102. Currently, slosh boundary conditions are only valid for acoustic
elements. Applying them to elastic elements will generate an error.

7.1.10. Infinite Elements

In this section, we describe how to use infinite elements for acoustics. These elements serve
as both high-order absorbing boundary conditions, and far-field calculators that allow the
analyst to compute the solution at far-field points outside of the acoustic mesh. This latter
step is a post processing step.

The infinite element specification begins with a sideset on the Exodus file of interest.
Currently, that sideset has to be an ellipsoidal surface or part of an ellipsoidal surface.
Thus, a full spherical surface, hemispherical surface, or a quarter of a sphere would all be
acceptable. Infinite element accuracy will degrade if the element surfaces on the boundary
do not adequately represent the ellipsoidal surface. The finite element surfaces will be
faceted, but enough elements on the boundary are needed to represent the ellipsoidal
curvature.

Once a sideset is identified for the infinite element surface, the boundary section in the
input deck would be modified as follows.

343

Parameter Description Options default
radial_poly the type of polynomial for

radial expansion
Lagrange,
Legendre,
Jacobi

Legendre

order the order of the radial basis 0-19 0
source_origin the origin of the ellipsoid 3 real numbers 0 0 0
ellipsoid_dimensions radial dimensions of ellip-

soid axes
3 real numbers 0 0 0

neglect_mass indicates whether to neglect
infinite element mass

yes or no yes

correct_mass whether to correct negative
mass terms.

yes or no yes

useplanelineintersectmethod

Table 7-117. – Available parameters for the infinite element section.

Boundary
sideset 1

infinite_element
use block 57

end
BLOCK 57

infinite_element
radial_poly = Legendre
order = 5
source_origin = 0 0 0
ellipsoid_dimensions 15 15 30
neglect_mass = yes

END

where block 57 contains the infinite element parameters. The number 57 is arbitrary; the
user can pick any number (or name) that is not assigned to a block in the input mesh
(Exodus) file. The parameters are summarized in Table 7-117. Currently, only Legendre
polynomials are available for the radial basis. The order of the polynomial can vary from 0
to 19. Order 0 corresponds to a simple absorbing boundary condition. Higher orders will
be more accurate, but also more computationally expensive. The source point is the
location of the center of the ellipsoid that the infinite elements emanate from.

The ellipsoid_dimensions parameters indicate the axial dimensions of the ellipsoid in the
global coordinate system. They are specified as ellipsoid radii instead of ellipsoid
diameters. In the case of a sphere, all 3 parameters are equal and the radius of the sphere.
These parameters are currently required, and an error will be generated if they are not
specified.

The neglect_mass keyword indicates whether to neglect the mass matrix contributions
from the infinite elements. By default, neglect_mass is yes. Note that for a spherical

344

surface, the mass matrix contributions from an infinite element are identically zero.
However, when numerically generated, small entries will be present in the mass matrix, and
thus an option is provided to include these terms in the analysis. Neglecting the mass, yes,
is recommended in most cases.

Infinite elements only require a specification of a sideset on the surface of interest. No
elements need be set up explicitly on this interface. Internally, Sierra/SD constructs
virtual elements and virtual nodes that define the actual infinite elements, but the analyst
need not build a layer of elements on the boundary of the sideset.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation, instead
of a standard Galerkin formulation. As a result, nonsymmetric system matrices are
encountered with infinite elements. This restricts the solver options to the GDSW solver
for time and frequency domains (i.e. directfrf). Infinite elements can be used either with
purely acoustic problems, or with coupled structural acoustics. The formulation is the
same, and the GDSW solver is required for the solutions since nonsymmetric matrices are
encountered.

7.1.10.1. Far-Field Postprocessing The infinite element formulation allows the analyst
to compute the response outside of the acoustic mesh as a post-processing step. The
response can be computed at any point outside the mesh, and for any time interval.
Currently, the linesample capability is used to write out the far-field data (see Section
8.6). This data may be written in a readable MATLAB format, which can easily be read
in to create plots of the data.

The output will be written to a MATLAB m-file with the name “linedata.m” or
“linedata.exo”, depending on which option is selected for output. One file is written per
analysis (results are joined analogous to history file output). For example, reading this file
in will create vectors FieldTime and displacement. The acoustic pressure is found in
displacement1 .

We note that the infinite element output in the far-field is always given with respect to
some time shift. Details of this are given in the theory notes on infinite elements. The
shifted times are included in the linesample output for the analyst to use. These allow for
plotting the time histories against the appropriate time vectors.

The shifted time output is available in the linesample output in a nodal array called
FieldTime. The dimension of the FieldTime array is the same dimension as the acoustic
pressure output, since each node in the linesample output has its own FieldTime array.
One FieldTime array is available for each sample point in the linesample output.

The following command in MATLAB will plot the pressure for the first sample point.

FieldTime = nvar09;
pressure = nvar01;
plot(FieldTime(1,:),pressure(1,:))

345

The linesample points defined in the linesample file can contain points that are both
inside and outside of the acoustic mesh. For points that are inside of the mesh, the
FieldTime array for each node will be identically equal to the time array. For points
outside of the acoustic mesh (i.e. inside of the infinite element mesh), the FieldTime values
will be larger than the corresponding time values in the Time array, since the acoustic
waves will take additional time to reach these far-field points.

7.1.11. Perfectly Matched Layers

Perfectly Matched Layer (PML) elements enforce acoustic baffle boundary conditions. A
detailed explanation of theory and implementation of our PML formulation is available.14

These elements serve as an absorbing boundary condition for outgoing acoustic waves,
much like infinite elements. Unlike infinite elements, they are linear elements, and do not
exhibit the large matrix condition numbers and convergence issues that can accompany
infinite elements. Table 7-118 summarizes the parameters.

While PML are a separate block of elements in the finite element boundary, in an input file
they are treated like a boundary condition. The boundary section is set up as follows:

Boundary
sideset 1
pml_element
use block 217

end

Block 217
pml_element
pml_thickness 1
stack_depth 1
source_origin = 0 0 0
ellipsoid_dimensions 15 15 30
loss_function = polynomial
loss_params 0 960 960 0

end

where block 217 contains the PML parameters. The number 217 is arbitrary; the user can
pick any number (or name) that is not assigned to a block in the input mesh (Exodus) file.
The output mesh will contain PML elements in block 217.

For PML, a loss function is a definition of the rate of decay of the outgoing wave. While
the choice of the loss function σ(d) is discussed in the literature,10,11,34 papers in the
literature use a range of formulations and implementations, and it is still unclear what the
best choice is for any given problem. Typically, the loss function starts at a low value
(often zero) to minimize numerical reflections, and increases at an increasing rate to

346

Table 7-118. – PML Element Parameters.
Parameter Description Options
pml_thickness length of PML extrusion Real

from boundary
stack_depth number of elements through Integer

PML thickness
source_origin the origin of the ellipsoid 3 real numbers
ellipsoid_dimensions radial dimensions of ellipsoid 3 real numbers
loss_function type of function describing singular or

PML decay polynomial
loss_params constants in loss function 4 real numbers

maximize the loss terms near the outer boundary. One option is the polynomial loss
function, that includes the constant, linear, quadratic, and cubic terms, with four
parameters that define the loss function

σ (ξ) = c1 + c2
ξ

t
+ c3

ξ2

t2
+ c4

ξ3

t3
(7.2)

where c1, c2, c3, and c4 are specified in the input file, ξ is the distance along the normal
from the Gauss point to the inner ellipsoid boundary, and t is the total thickness of the
PML layer. The loss function is normalized such that changing the thickness of the PML
layer does not change the maximum value of σ. Another option is the singular loss
function.11 (equation (7.3)), which is unbounded at the outer boundary.

σ (ξ) = c1
t− ξ

(7.3)

PML elements can be extruded from either Tet4 or Hex8 meshes. Note that Tet4 is the
default; for PML elements extruded from Hex8 meshes, it is necessary to specify Hex by
modifying the boundary section as follows:

Boundary
sideset 1
pml_element
use block 217
hex

end

7.1.11.1. Limitations PML is only supported for certain formulations and element types.
The implemented PML formulation only applies in the frequency domain, and will throw a
fatal error for frequency or time domain simulations. Additionally, PML is only supported
for three and four noded boundary faces, limiting the exterior of the acoustic domains to
Tet4, Wedge6, and Hex8 elements.

347

7.1.12. Periodic Boundary Conditions

Periodic boundary conditions can be applied in Sierra-SD using begin-periodic block.
Built on the tied data algorithm, periodic boundary conditions are currently supported for
structural/solid surfaces, with the displacement on the side B surface specified relative to
the displacement of the side A surface. The A and B surfaces within a begin-periodic block
may not share nodes, but surfaces across various begin-periodic blocks can share nodes
(e.g. standard representative volume element (RVE) model would have three begin-periodic
blocks, with the surfaces in each block sharing nodes with surfaces in other blocks, at the
RVE edges). The surfaces can be curved, but the user must ensure that they have the same
geometry, translated in space. Meshes on the two surfaces need not match. Matching
meshes are however recommended whenever feasible, to ensure accuracy of the computed
stresses on the surfaces. See discussion in Tied Surfaces section above regarding
inaccuracies in stresses at the tied surfaces with mismatched meshes. The underlying
algorithm results in non-homogeneous MPCs from a node-face constraint algorithm.
Naturally, for matching meshes, these MPCs reduce to node-to-node MPCs.

Like a tied data block, each begin-periodic block represents a single pair of opposing sides
connected by periodic boundary conditions, as shown in the example below.

begin-periodic
side A = 12
side B = 18
name "PBC-x-12-18" // used as a descriptor for the output
geometric offset = 10.0 2.0 3.0
search tolerance = 1e-7
Ux = 0.5
Uz = 0.25

end

begin-periodic
side A = 1
side B = 6
name "PBC-y-1-6" // used as a descriptor for the output
search tolerance = 1e-7
Ux = 0.5
Uy = -0.5

end

In defining surfaces, care must be exercised to ensure that the normal vectors of the two
surfaces point towards each other. The keyword “geometric offset” represents the distance
from the A surface to the B surface in x, y and z directions. Similar to the TIED DATA
block, the keyword “search tolerance” represents the normal distance from a node on the B
surface, shifted by the geometric offset, to the face on the A surface. See Figure 9-63 for
further details. The keywords “Ux,” “Uy” and “Uz” represent the displacement of the B

348

surface relative the A surface in x, y and z directions respectively. The description of all
the parameters are shown in Table 7-119.

7.1.13. Usage Guidelines

The user is referred to the verification manual for examples of periodic boundary
conditions(PBC), one with unidirectional PBC and the other with multi-directional PBC,
and their application to simulating periodic volume elements (PVE). Here, we provide
some guidelines and cautionary remarks associated with PBC and PVE.

1. Matching Meshes The two sidesets that are connected by PBC do not need to have
matching meshes, but are recommended whenever feasible. Such matching meshes can be
built using various tricks at the mesh-generation stage. For example, for symmetric PVEs
(with deterministic microstructure), one could split the PVE using plane(s) of symmetry,
meshing one part and mirroring the meshed volume to get the complementary volume,
eventually building the mesh for the overall volume with matching meshes on the opposite
side.

2. Non-matching Meshes: When the microstructure is random or lacks symmetry, PBC
may need to be applied to connect non-matching meshes. Such situations may encounter
local oscillations in stresses on the surface, associated with the underlying node-face contact
strategy. These oscillations are expected to decay quickly going into the volume, making
the volumetric average more accurate. Since micromechanics modeling often involves
average stresses, the error in homogenized global material properties is expected not to be
significant provided that the representative volume element (RVE) is large enough (which
will also be a requirement from the standpoint of representing random microstructure).

3. Geometric Offset: Theoretically, geometric offset should not be needed in the
periodic-boundary block. However, whenever the opposite faces have non-matching meshes,
there can be errors in automatic computation of offset, which involves centroid
computation of the sideset that may involve discretization errors. Given this, whenever
feasible, it is recommended that the geometric offset be provided in the input. Note that
this comment applies only to non-matching meshes; automatic computation of geometric
offset would not have any errors for matching meshes.

4. Imposition of Homogenized Strain: The user is referred to the verification manual
(problem on PVE) for details of imposing global strain tensor through multi-directional
PVE.

349

Table 7-119. – Parameters for Periodic Boundary Conditions.
Parameter type description
Name String name of periodic boundary condition block

defaults to periodicBC
side A Integer sideset A id
side B Integer sideset B id
Geometric 3 Reals x,y,z components of B sideset location relative
Offset to a sideset automatically computed if not

explicitly specified, explicit specification
is recommended for non-matching meshes)

Search Real search tolerance normal to the face
Tolerance

defaults to 1e-8
Ux Real x-displacement of B sideset relative to A sideset

default value is 0.0
Uy Real y-displacement of B sideset relative to A sideset

default value is 0.0
Uz Real z-displacement of B sideset relative to A sideset

default value is 0.0

7.2. Exodus Mesh Boundary Condition Input

Several boundary conditions may be set to values specified in the mesh geometry file or
input sources. This is used to hand-off loads an earlier finite element analysis, even a
previous Sierra/SD simulation. The pressure determined in another code, and output to a
sideset and can put input on the sideset, determining the right-hand side in a Sierra/SD
analysis.

The Exodus file input data is defined at one or more time slices that do not necessarily
correspond to Sierra/SD time steps. Figure 7-56 summarizes the rules for interpolating
the input time slides to Sierra/SD time steps.

The value of a boundary condition at a time . . .

• . . . before any input Exodus time steps is the initial input value.

• . . . between two input Exodus time steps is determined by linear interpolation.

• . . . after the last input Exodus time step is the last input Exodus time step.

An example of interpolating Exodus data do Sierra/SD time steps is shown in
Figure 7-56.

350

Figure 7-56. – Example of Interpolation of Exodus Data to Analysis Steps.

7.2.1. SpatialBC Functions

This appears to be a capability that was added for a specific purpose that was mistakenly
exposed to users.

The Spatial boundary condition function is used to set a boundary conditions from the
input Exodus mesh geometry file. It resembles the randomlib function 3.8.8. The
difference is that the randomlib function uses a nodeset associated with the specified
sideset. With Spatial boundary condition, the nodeset is specified directly.

The variable input from the Exodus file is specified with the parameter exo_var, followed
by either scalar or vector, sets the variable input from the Exodus.

In the example the input scalar is acceleration in the Z direction:

boundary
nodeset NS_top
function from_mesh
accelz = 1

end
function from_mesh

type = spatialBC
nodeset NS_top
exo_var scalar Acc_Z

end

351

Here “Acc_Z” is the exact name of a field on the Exodus nodeset. Exodus field names are
case insensitive.

Sierra/SD has only a couple regression tests of SpatialBC, and each test uses exactly the
same boundary condition. Each results in a confusing and misleading warning about
missing sidesets. The vector input feature is completely untested.

7.2.2. Input an Acoustic Point Source from a Volume

The 3 tests of ReadNodal exercise the capability to input a scalar acceleration from the
whole mesh (body) or an element block. In acoustic point source analysis volume velocities
may be input from an Exodus file using a ReadNodal function. In theory, the Exodus file
contains the first or second derivatives of the volume velocity at the corresponding times.
The name of the field input from the Exodus file is specified with the exo_var keyword.
Table 7-120 lists the run time parameters for ReadNodal functions. An example is provided
in input 7.8. The keyword exo_var must be followed by two keywords, specifying first
whether the data is a scalar or a vector, and second specifying the name of the variable on
the Exodus database. However, the vector input feature is untested. Thus, Table 7-120
specifies that a scalar variable with the name volume_acceleration should be available
on the Exodus database. The interp parameter is the same as was described for the
randomlib functions in Section 3.8.8. It specifies the type of temporal interpolation.

ReadNodal determines what, if anything, to read by accepting the first match found. One
after another, it searches for 3 things, and errors out if the last search come up empty. The
first search is for a nodal variable with the specified name (i.e.,volume_acceleration in
the example above). Next it looks for an element variable with the same name. Finally, it
searches for a face variable.

Table 7-120. – ReadNodal function parameters.
Keyword Values Description
type ReadNodal required to specify function
interp temporal interpolation scheme

none=nearest
linear=linear interpolation

exo_var scalar volume_acceleration either scalar or vector,
followed by variable name

function 55
type=ReadNodal
interp=none
exo_var scalar volume_acceleration

end

352

Input 7.8. Example ReadNodal Function Specification

7.2.3. Input an Acoustic Point Source from a Node Set

Input volume velocities for acoustic point source analysis from the input Exodus mesh
geometry file with the ReadNodalSet function. Velocities are input at each time specified
in the Exodus file. Spatially dependent velocities are input at each nodeset node.

Table 7-120 lists run time parameters for ReadNodalSet functions. The only difference from
the ReadNodal parameters is the required nodeset parameter. The force is applied over a
single nodeset of the model. This nodeset must match the definition in the load section.

function 55
type=ReadNodalSet
interp=none
nodeset=NS_top
exo_var scalar volume_acceleration

end

Input 7.9. Example ReadNodalSet Function Specification

7.2.4. ReadSurface functions

A ReadSurface function reads in data from either the entire Exodus file, or a nodeset or
sideset that covers a surface of interest. If a set is specified in the function block, then
data corresponding to that set is read in from the Exodus file. Otherwise, the variable is
read from the entire mesh as a nodal variable (rather than a nodeset variable).

Once the data is read, Sierra/SD integrates the data over the surface to create a time and
spatially-varying forcing function. One difference between this function and the ReadNodal
function is that the data is from ReadSurface is used in a surface integration to generate
the load, whereas the data from ReadNodal does not need to be integrated, and thus can
be inserted directly into the force vector.

This function is used to read in surface velocities or accelerations which are used as a
boundary condition for acoustic analysis. It can also be used for applying time and
spatially-dependent pressure or traction loads on a structure. For this case, the load output
variable currently only outputs element data for values read from a sideset. Nodal values,
like those used in randomlib functions, are output as 0. There is 1 and only 1 test of read
surface with a traction load.

As currently implemented, the ReadSurface function operates only by reading data from an
external exodus data file. The name of the variable to read from the Exodus file must be
specified in the input deck using the exo_var keyword. Also, the variable must be specified
to be a scalar or a vector, using the syntax given in input 7.10. Pressures require a scalar

353

variable, and tractions require a vector variable. An example for ReadSurface functions is
given in input 7.10. A sideset matching the corresponding Load sideset is required. The
interp selected the temporal interpolation algorithm as was described for the randomlib
function. The default option, linear interpolation, is the only option available.

In input 7.10, the keyword exo_var specifies the type of data, such as vector or scalar,
and the name of that variable in the Exodus file. In the case of a vector, the name of the
variable as given in the input deck should be the base name of the variable, without the
suffix of ‘x’, ‘y’, or ‘z’. For example, for the data given in input 7.10, a vector nodal
variable with a base name of name ‘traction_load’ should be available in the Exodus file.
Thus, the data in the Exodus file would have names traction_loadX, traction_loadY,
and traction_loadZ. In the case of scalar data, the base name given (i.e. traction_load
in input 7.10), should match exactly the name of the nodal variable in the Exodus file.

loads
sideset 1

traction 1 1 1
function 55

end
function 55

type=ReadSurface
interp=linear
exo_var vector traction_load

end
OUTPUTS

velocity
END

Input 7.10. Example ReadSurface Function Specification

ReadSurface functions ignore distribution factors when used to apply loads. See
section 7.3.14.1.

7.2.5. ExodusRead functions

A ExodusRead) function reads in data from elements. Exodus read is currently only
available with the acoustic boundary conditions point_volume_acceleration and
point_volume_velocity.

ExodusRead function operates only by reading data from an external exodus data file. The
name of the variable to read from the Exodus file must be specified in the input deck
using the exo_var keyword. The acoustic load conditions this function type supports are
scalars.

354

loads
block 1

point_volume_accel = -1.0
function = 77

end
function 77

type=ExodusRead
exo_var scalar dd_vol

end

Input 7.11. Example ExodusRead Function Specification

7.2.6. In Core Transfer Functions

A limited capability exists to perform in core transfer of variables between physics codes
via MPI messages rather than Exodus files. In this use case both codes are run
simultaneously with the results from the load producing code constantly being fed to the
load using code. The main use case for this capability is to hand-off boundary conditions
from one code to another without the need for huge intermediate Exodus files with a large
numbers of steps.

7.2.6.1. Transfer from Fuego
One field that may be transferred in core is the divergence of Lighthill’s tensor from Fuego
to Sierra/SD. This is a nodal value that can be used as an acoustics load term. An
example of the relevant input for this case is:

PARAMETERS
mpmd_transfer_type = fuego

END
LOADS

nodeset = 1000
Lighthill = 1.0 #Sets load type and scale factor
function = from_fuego

END
FUNCTION from_fuego

type transfer
END

An example of the job execution syntax for this case is:

$ mpirun -n 1 fuego -i Fuego.i : -n 1 salinas -i Salinas.inp

355

7.2.6.2. Transfer from SPARC
Another field that may be transferred in core is the traction load from SPARC to
Sierra/SD. This is a face-based term that can be used for structural loads. An example of
the relevant input for this case is:

PARAMETERS
mpmd_transfer_type = SPARC
mpmd_transfer_sidesets = 5

END
LOADS

sideset 5
traction = 1.0 1.0 1.0 #Sets load type and scale factors
function = from_sparc

END
FUNCTION from_sparc

type transfer
END

An example of the job execution syntax for this case is:

$ mpirun -n 1 sparc -i sparc.i -c 0 : -n 1 salinas -i Salinas.inp

7.3. Loads

Loading conditions are specified within the loads section. The following example
illustrates the method.

Loads
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = my_load_function

nodeset nose
coordinate 11
force = 0. -1 0

nodeset 7
point_volume_vel = 1
scale = 1.0
function = 1 // time history of dV/dt,

// where V is the volume of the source
body

gravity
0.0 1.0 0
scale -32.2

356

block wing
thermal_load
function = 1

block 12
thermal_load
function = 3

sideset 7
pressure 15.0

sideset tail
traction = 100.0 20.0 0.0
coordinate 0

sideset 13
acoustic_vel 1.0
function = 1

sideset 14
pressure = 1
follower=yes

node_list_file=’force.nodes’
force=1.0 0 0.
scale = 100.
function=2

END

Loads may be applied to node sets, side sets, blocks, node lists (see Section 7.1.6), or the
entire body (in the case of inertial loads). Pressure loads may be applied using side sets.
The pressure is always normal to the surface. All loads applications are additive. Forces
should not be applied to sidesets.

The components of each load specification are listed in Table 7-121. The syntax followed is
to first define the region over which the load is to be applied (either nodeset, sideset,
block, node_list_file, or body). Each such region defines a load set. For each such
definition, one (and only one) load type may be specified. However, any region definition
(except node_list_file) may be repeated so that forces and moments may be applied
using the same region.

Following the definition of the load type, a vector (or scalar in the case of pressure loads)
must be specified, except in the case of a thermal load, where no vector or scalar multiplier
is needed.The vector is the load applied in the basic coordinate frame unless a coordinate
frame is also specified (see Section 3.7).

7.3.1. Load

Loading conditions for individual cases in a multicase solution are specified within the load
section. See Section 4.2 for information on load specifications for multicase solutions. Here
is an instance where maintaining backward compatibility leads to great confusion. A load

357

section is a loads (7.3) section that has an identifier. Many, many years ago, the load
section was added with multicase solutions. The legacy loads for single case solutions has
been retained. There are many circumstances where a loads section is required, and cannot
be replaced by a load section.

The following example illustrates the input. 5

LOAD=57
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
force = 0. -1 0

END

Unlike the loads section, there may be multiple load sections in the file. Each load can
then be applied to different cases in the multicase solution by calling out the load identifier
in the case block of the multicase solution, as described in Section 4.2.

7.3.2. Scale Factors for the Load

The total load on each degree of freedom is the product of the load vector, the scale factor,
and the nodeset distribution factor found in the Exodus file. For pressures and tractions,
the load is also multiplied by the area of the face. Note that in some cases the nodeset
distribution factor may be zero. 6 In that case, the total applied force will also be zero. Use
the Boolean parameter AllowExodusDistFacts to ignore Exodus distribution factors.

7.3.3. Sideset Loading

The pressure, acoustic_vel, and acoustic_accel boundary conditions may only be
applied to side sets. The total pressure is the product of the scale factor, pressure (scalar)
and sideset distribution factors. By default, pressure loads are not follower loads, i.e.
pressures are applied in the direction of the undeformed element normal for the entire
simulation. The follower keyword may be applied to user defined functions if a follower
load is required. See section 7.3.6 for follower stiffness specification.

If the pressure loading is not normal to the sideset, the traction capability should be used.
NOTE: Pressure will act on a surface in a compressive sense, while a traction can be
specified as any vector which will act on the sideset specified in the direction given by the
triple values specified after traction. Also, traction loads are applied on the faces of the

5The identifier is usually an integer, but any unique string is acceptable.
6Because the nodeset distribution factors are part of the Exodus file, and may be difficult to check, errors
in the distribution factors are common. Analysts are urged to carefully examine the distribution factors.

358

shell elements piecewise, i.e., the traction load acting on a face of the element is assumed
constant. If the distribution factors on the nodes of the element vary, the average of the
load (element per element) is assumed.

Traction loads may be specified in either the global coordinate frame (default), or in a
coordinate frame projected onto the surface.

If the analyst provides a coordinate frame with the traction definition, then that frame is
projected onto the surface of each element. Figure 7-57 illustrates that projection. Note
that when a coordinate system is used, there can be a mesh dependence on which direction
the forces are applied. Note that the third coordinate of the traction will always be applied
along the surface normal, and that the third component of the vector will always
correspond to the surface normal (and hence will be applied as a pressure).

X̃

ỸZ̃

Cuser

X̃′

Ỹ ′
Z̃′ = n

Cp

Consider a user defined coordinate frame, Cuser defined by the
basis vectors,

(X̃, Ỹ , Z̃)

A surface normal, n, is defined by the element normal. The user
defined coordinate frame is projected onto the surface as follows.

Z̃′ = n
X̃′ = Ỹ × Z̃′

Ỹ ′ = Z̃′× X̃′

This transformation is singular when Ỹ ×n is zero. Near that
location, the transformation is modified.

Z̃′ = n
Ỹ ′ = Z̃′× X̃
X̃′ = Ỹ ′× Z̃′

When normalized, (X̃′, Ỹ ′, Z̃′) form the basis for a coordinate
frame, Cp, on the surface of the element in which to apply the
tractions.
Note: This transformation is dependent on the direction of the
element normal, n. If Z̃ is in the opposite direction of n, the
Ỹ direction will be preserved, but the X̃′ direction will be the
opposite of X̃. This preserves the right-hand rule.

Figure 7-57. – Coordinate Frame Projection for Tractions

359

Section Keyword Parameters

Region
(defines application area)

body
nodeset
sideset
block
node_list_file

-
id/name
id/name
id/name
file name

force val1 val2 val3
moment val1 val2 val3

Load Type gravity val1 val2 val3
(defines application method) pressure value

point_volume_vel value
point_volume_accel value

acoustic_vel value
acoustic_accel value

Lighthill value
surface_charge value

traction val1 val2 val3
thermal_load -
energy_load -

optional specifications
Coordinate Frame
(for vector loads only)

coordinate id/name

Scale Factor Multiplier scale val1
Function (Required for
transient analysis)

function id

follower follower yes/no

Table 7-121. – Load Specification Keywords.

360

7.3.4. Spatial Variation

Variation of the load over space is accomplished using node set or side set distribution
factors or a function. If these are provided in the Exodus file, the load set is spatially
multiplied by these factors. The total loading is the sum of the loads for each load set
summed over all the load set regions.

7.3.5. Required Section

When prescribed accelerations are applied in the boundary section (7.1), they induce a
load on the structure. In these cases the loads section may serve no purpose, unless an
additional external load is applied. In these cases, an empty loads block is still needed in
the input file. An error is generated if the input deck has no loads section.

7.3.6. Follower Stiffness

The follower stiffness that corresponding to an applied pressure load may be included. A
follower pressure load applied to a structure will “follow” the structure during deformation,
always remaining normal to the surface where they are applied. As such, the applied force
due to a pressure load depends on the deformed state, and this induces a follower stiffness
matrix that contributes to the overall stiffness matrix of the structure.

The boundary where the pressure is applied is specified with a sideset. Also, the magnitude
of the applied pressure field must be specified, as shown in the example below. The
follower stiffness matrix scales linearly with the magnitude of the applied pressure.

Loads
sideset=1
pressure = 10.0
follower=yes

END

In the above example, sideset 1 is used to denote the surface where the pressure is applied.
The parameter "pressure" specifies the magnitude of the applied pressure field.

7.3.7. Acoustic Loads

The acoustic_vel, acoustic_accel, point_volume_vel, point_volume_accel,
Lighthill loading conditions are specifically designed for acoustic elements, and thus may
only be applied to acoustic elements. In all cases, a time function is required that defines
either the time or frequency dependence of the loads.

The acoustic_vel and acoustic_accel keywords specify the fluid velocity and fluid
acceleration in the normal direction of the element faces in the sideset, respectively. Note

361

that these are the counterparts to the pressure load for structures in the sense that they
are Neumann boundary conditions.

We note that the acoustic_vel and acoustic_accel approaches should yield the same
acoustic response, provided that the acoustic_vel time function is precisely the time
integral of the acoustic_accel function. This time integration must include the constant
of integration. If the two time functions for acoustic_vel and acoustic_accel are
complementary in this way, the acoustic pressure output from these approaches will be the
same up to first order. They are not exactly the same since the time derivative of velocity
potential is needed to generate the acoustic pressure for output, and that time derivative is
only first-order accurate.

An example of the acoustic_vel keyword is given below.

Loads
sideset 1

acoustic_vel = 1.0
function = velocity_function

END

In this case, sideset 1 is given a prescribed normal velocity of amplitude 1, with a time
dependence given by function “velocity_function”.

Currently, a given load case cannot contain both an acoustic_vel and an acoustic_accel
input. Only one or the other can be specified in a given load case, though for a multicase
solution the acoustic_vel and acoustic_accel inputs could be present in separate load
cases. We also note that for coupled structural acoustics, only the acoustic_vel keyword
is applicable. For analysis involving only acoustic elements, either keyword can be used.

The point_volume_vel and point_volume_accel keywords prescribe an acoustic
point source on a nodeset. This force is the product of the fluid density with the first and
second derivatives, respectively, of volume of the source. The function for the point source
contains the time history of the first (for point_volume_vel) and second (for
point_volume_accel) time derivative of volume.

Since the code scales by density in the internal calculations, there is no need to multiply
the time history of volume by density to get the acoustic force. Thus, for point sources the
scale parameter is typically set to 1.0, unless a direct scaling is desired. The units of the
input time functions for point_volume_vel and point_volume_accel are volume per
unit time and volume per unit time squared, respectively. The density need not be
multiplied by these functions, since the code is already dividing by density internally (see
the theory notes on structural acoustics for a more detailed discussion.)

Currently, the point acoustic source is only implemented for the time domain (transient)
calculations.

362

Keyword Lighthill prescribes the divergence of the Lighthill tensor at nodes. The double
divergence of the Lighthill tensor is a source term for noise generation in the pressure
formulation of acoustics. And the divergence of the Lighthill tensor is a time varying vector
quantity that can only be applied as a nodeset load using the readnodalset function. A
Lighthill load is only implemented for the transient simulations. It is only valid for the
pressure formulation of acoustics and can only be used with acoustic_accel loading. For
Lighthill loading, the scale parameter is typically set to 1.0, unless a direct scaling of the
load being read in is desired. The outputs keyword acousticlighthill outputs the
acoustic Lighthill source term.

Loads
nodeset 1
point_volume_accel = 1.0
function = accelFunc

end

Function accelFunc
type LINEAR
name "volume_acceleration"
include inc/volume_acceleration.inp

end

Outputs
acousticlighthill

end

Input 7.12. Example Input for Point Acoustic Load. In this case, nodeset 1
would consist of a single node, and the file "volume_acceleration.inp" would
contain the second time derivative of volume velocity of the source, with units
of volume per time squared. Note that the amplitude of the point source is

taken to be 1.0, and that it does not include the density multiplier.

The sign conventions of the acoustic_vel, acoustic_accel, point_volume_vel, and
point_volume_accel keywords are important. For the acoustic_vel and
acoustic_accel cases, the equations of motion are given by,

1
c2
p̈−∆p=−

∫
Γ
ρq(a ·n)dΓ (7.4)

or, in discrete form,
Mp̈+Kp= f (7.5)

where ρ is the density, q is the surface shape function, a is the acceleration vector on the
surface, n is the normal to the surface, and Γ is the portion of the surface where the
loading is defined. M , K, and f are the mass, stiffness, and discrete force vectors. We

363

denote a ·n= an as the normal component of acceleration. We also note that this force has
a negative sign in front of the integral, which comes from the variational formulation. This
implies an inverse relationship between surface acceleration and acoustic pressure. Thus if
the acceleration is oriented in the same direction as the normal, then an will be positive,
and thus the total force vector will be negative. Intuitively, this makes sense, since if the
acceleration is in the same direction as the surface normal, mass will be ejected from the
acoustic space, causing a decrease in pressure. Conversely, if the acceleration is oriented in
the opposite direction as the surface normal, then an will be negative. This will cause the
total force vector to be positive, resulting in a positive pressure. These makes sense, since
in this case mass will be added to the acoustic space, causing an increase in pressure.

For the point_volume_vel and point_volume_accel boundary conditions, the
equations of motion are given by

1
c2
p̈−∆p= ρ

∂2V

∂t2
δ(x−x0) (7.6)

or, in discrete form,
Mp̈+Kp= f (7.7)

where ∂2V
∂t2 is the second derivative of the volume change with respect to time, and

δ(x−x0) is the Dirac delta function that makes the term zero everywhere except where
x= x0. We note that V is the volume of fluid added to the surrounding acoustic space, not
the volume of the point source per se. Thus, the sign of the acoustic pressure will be
related to the sign of

∂2V

∂t2
= V,tt

A positive V,tt would result in a positive acoustic pressure, implying that fluid mass is
added to the surrounding acoustic space. Conversely, if V,tt is negative, mass will be
subtracted from the acoustic space, and thus a negative acoustic pressure will result.

The previous examples involved spatially constant functions of time. Acoustic boundary
conditions with spatially-varying functions of time are supported through the ReadNodal
and ReadSurface functions as described in Sections 7.2.2 and 7.2.4 respectively.

7.3.8. Thermal Loads

The thermal_load option is used in conjunction with a spatial temperature specification
for the structure. The temperature distribution can either be specified via the input
Exodus file, or on a block-by-block basis, as described below. Based on the temperature
distribution, a thermal load is computed and then applied to the structure.

If the solution method is selected to be statics, the thermal_load option will provide the
thermal load necessary to solve the thermal expansion problem. If the solution method is
transient dynamics, the same thermal load will be applied as in the statics case, but
modulated by the function that is specified below the thermal_load keyword. This
corresponds to a thermal shock analysis. Thus, for a transient dynamics problem that

364

includes damping, and with a function that is equal to 1.0 for all time, the transient
analysis would eventually converge to the same solution as obtained in the statics analysis,
which would be the solution from a classical thermal expansion analysis. On the other
hand, for a transient dynamics problem with a thermal_load in which the associated
time function is not equal to 1.0, the thermal load will be scaled according to that time
function. For example, in the case of a mesh that has block-by-block values of temperature
T_current specified in the input deck, and a thermal load function that ramps up from
zero to one, the actual thermal load applied to the structure will be multiplied by that
time function. In this case, the full thermal load will only be seen after the ramp in the
time function is completed.

If it is desired to apply a thermal preload to a structure, we generally recommend using a
statics analysis rather than a transient analysis, since in the latter case the preload that
will be computed will be a dynamic preload that will oscillate about the static preload
solution. If damping is used, this dynamic preload will converge to what would be obtained
from using a statics analysis. However, in some cases such as when rigid body modes are
present, a transient analysis may be the only option for applying the preload.

The temperature field can either be read from an Exodus file, which would typically be
the result of a thermal analysis, or it can be specified on a block-by-block basis in the input
deck. For temperature fields that change from element to element, the temperatures must
be read in from the Exodus input file. For more uniform temperature distributions, it is
more efficient to specify them block-by-block in the input deck. Note that when using
thermal loads, the temperature data is expected to either be in the mesh (exodus) files, or
specified using the input deck (i.e. block-by-block). If temperature is specified in the
Exodus file and on a block-by-block basis in the input deck, then the input deck values
take precedence.

Output stress and strain. Sometimes it is of interest to output the stress after a
thermal load analysis. In this case, the stresses that are output to the Exodus file will be
the mechanical stress, rather than the combined thermal-mechanical stress. There is a
known bug in the way that thermal stresses are computed, particularly when temperature
comes from the Exodus file. If thermal stresses are needed, then extreme care should be
taken. Mechanical stress is the same as elastic stress. Strain, elastic_strain, and
thermal_strain output are all available.

Input deck syntax. If temperatures are specified using the input deck, then each block
must be given its own temperature. In the example below, there are 2 blocks, and each is
given a different temperature.

365

BLOCK 1
material 1
T_current 100

END
BLOCK 2

material 2
T_current 200

END

Note that if Tcurrent is specified for some blocks and not for others, the code will error
out.

When temperatures are read in from the Exodus file, the material properties can be
specified as temperature-dependent. This implies that each element will have different
material properties. More details are given in the section on temperature-dependent
material properties.

For thermal statics or thermal transient analysis, each material block must be given two
additional parameters, the reference temperature, Tref = Tref, and the coefficient of
thermal expansion, αt = alphat. These parameters are defined via the thermal strain,
which is given by

εthermal = alphat(Tcurrent−Tref) (7.8)
An example is the following.

MATERIAL 1
E 10e6
nu 0.3
Tref 300.0
alphat .001
density 0.1

END

The defaults for Tref and alphat are both 0.0. This implies that if they are not specified,
then the material will not contribute to the thermal analysis (see equation 7.8).

Note: currently, isotropic thermal strain is supported for isotropic, isotropic viscoelastic,
and anisotropic materials.

Shell and beam type elements are not supported in thermal strains. If a material with a
coefficient of thermal expansion is used in a shell, beam, or other unsupported element
Sierra/SD will generate an error.

The default Exodus file labels for the temperatures are shown in the table below. This is
the default variable format for Sierra/SD. However, it is also possible to read in element
variables and variables of different names. Using the keyword thermal_exo_var in the
parameters section (3.3) allows you to specify the name of the temperature variable in
the Exodus file. A fatal error is generated when thermal_load is used with

366

energy_exo_var. A nodal variable of this name is expected. If there is not one, an
element variable is used. And if no element variable of the given name is found, an error
will be generated.

Name Definition
TEMP the nodal temperature

The thermal_load case can be used in a multicase solution method. In that case, the
stresses and internal forces from the thermal analysis are used as initial conditions for the
next case. For example, for a fixed-fixed cantilever beam that is subjected to a uniform
temperature increase, the beam will undergo a stretch due to the thermal static analysis,
and will have residual stresses. If this beam were then subjected to an eigen analysis in a
subsequent case, the modes would be modified due to the geometric stress stiffening.
Conversely, for a fixed-free beam, there would be no residual stresses and thus no effect on
subsequent cases. Note that the displacements from thermal analysis are not carried over to
subsequent cases. Thus, to get the total displacement from a thermal analysis followed by
transient, one would need to add the displacement results from the two cases separately.

When temperature is read from the Exodus input mesh using either the default
temperature file name or the thermal_exo_var keyword a constant temperature can be
read from a single time step with the keyword thermal_time_step in the parameters
block. Alternatively a time variant temperature can be updated periodically from the mesh
file with use of the keyword nUpdateTemperature in the solution case input. The
nUpdateTemperature keyword defines how often (every n steps) temperature should be
updated. In a transient run updating of temperature is moderately expensive thus it may
be advantageous to only update temperature at a finite step interval if temperature is
changing slowly.

When a new temperature value is read that temperature is used immediately to update the
applied thermal strain. Additionally, the updated temperature can be used with the
nUpdateDynamicMatrices keyword to use apply the changing temperature to updated
material properties. When reading transient temperature data from the input mesh the
closest Exodus time step at or below the current time step is used. Temperature does not
interpolate between Exodus steps.

The thermal_time_step keyword must be specified in the parameters block, to specify
which time step of the previous thermal analysis should be used to extract temperature
data. The following gives an example.

Parameters
thermal_time_step 10
thermal_exo_var "TEMP"

end

The Exodus files can contain multiple time steps of temperature data. The user can select
which time step is to be used for defining temperature data in Sierra/SD, using the

367

keyword thermal_time_step. In this example the tenth time step will be read in from
the Exodus file. The default value for the thermal_time_step is 1.

The nUpdateTemperature keyword is placed in the solution case to specify how often to
update the temperature that is read in.

SOLUTION
transient
nUpdateTemperature 5

END

Here a new temperature is read in every 5th time step. If the transient solution specifies
the last time step from the thermal analysis, then the final temperature will be used.

The next example presents input for thermal statics analysis.

SOLUTION
statics

END

Parameters
thermal_time_step 10

end

Loads
body

thermal_load
END

7.3.9. Energy Deposition Input and Loads

Input from energy deposition are similar to thermal loads (section 7.3.8). These loads are
specified when energy is deposited directly in the structure as with an X-ray deposition.
For consistency with other applications, the energy is defined as specific energy, i.e. the
energy per unit mass. Such direct energy deposition is converted to a change in
temperature after which thermal strains and loads are computed exactly as for the
thermal_load approach.

368

Energy is converted to a change in temperature using the specific heat of the material (see
Section 5.4.8).

Ẽ = Cv∆T.
Ẽ is the specific energy of the body, Cv is the specific heat capacity for constant volume,
and ∆T is the change in temperature.

The energy load is specified using the keyword energy_load. All other parameters are
identical to thermal_load. Note that by the nature of these loads there is often an
exponential decay in energy as a function of depth. For this reason, it is advantageous to
specify the loads at Gauss points, particularly when using higher order elements. Energy
loads can also be specified at nodes or centroids. Nodal energy loads should be avoided
because it is not clear which materials specific heat to use when converting an energy load
to a temperature change for nodes on the interface between two materials. For this case
Sierra/SD will use the specific heat of the material that is processed last (which is not
typically what is required by the analyst). Sierra/SD generates a fatal error if the specific
heat is not specified for a material with an energy load.

Energy may also be used as an input for thermally dependent material properties. To
ensure that the energies are converted to temperature before determining the material
properties, identify the variable name from the Exodus file with the energy_exo_var
and energy_time_step keywords, rather than the thermal_exo_var and
thermal_time_step keyword. Using thermal_exo_var with energy_load generates
a fatal error.

7.3.10. Consistent Loads

The loads for every 3-D and 2-D element is calculated consistently when a pressure load is
applied. For more details on the implementation, see the programmer’s notes. It is
important that consistent loading be used. This is especially true for shell elements where
the consistent loading is required to properly apply rotations.

7.3.11. Pressure_Z

Depth dependent pressure loads may of course be applied using a user defined function. To
simplify this loading condition, depth dependent pressure may also be applied using the
pressure_z keyword. An example is shown in input 7.13. This loading is applied only in
the basic coordinate frame, and the analyst must specify that the pressure is either “below”
or “above” an offset to the coordinate axis. The pressure is always proportional to the
depth. In the example of input 7.13, the pressure is zero at x= 5, 10 at x= 4, 20 at x= 3.
At depths above the “waterline”, the pressure is zero. Any of the basic coordinate
directions (x, y, or z) may be used as a reference.

369

// depth dependent pressure for a waterline at x=5.
Loads

sideset 2
pressure_z 10.0 below x = 5

sideset 20 // air
pressure_z 1e-4 above x = 5

END

Input 7.13. Depth Dependent Pressure Load Example. This load section
applies a pressure to sideset 2 which is proportional to the distance below x= 5.

7.3.12. Surface Charge

For electro-mechanical coupled materials such as dielectric or piezoelectric materials,
surface charges may be applied to a specified sideset using the keyword surface_charge
in the loads block. The surface charge is mechanically analogous to a pressure, where
surface charge represents a charge per unit area and is applied only to the voltage degrees
of freedom. Surface charges can be applied for direct frequency response and transient
solution methods. An example is provided below.

Loads
sideset 1
surface_charge = 1 // scalar multiplying the specified function
function 1 // surface_charge function

END

Input 7.14. Surface Charge Example

7.3.13. Static Loads

Static loads only require the definition of the load region and load keyword (e.g. force) with
its accompanying parameters. A function may be used instead. In this case, the function
will be evaluated at time t= 0.

370

7.3.14. Time Varying Loads

Additional options provide the capability of varying the load over time. The load options
include,

• scale with one parameter provides a scale factor to be applied to the entire load set.
Only one scale may be provided per load set.

• function. A time varying function may be applied by specifying a function ID. Only
one function may be applied per load set. The function is defined in the function
section (see Section 3.8 on page 96). The loads applied at time t for a particular load
set will be the sum of the force or moment vectors summed over the nodes of the
region and multiplied by the scale value and the value of the time function at time t.

NOTE:
If no function is applied for a particular load, then the function
is defined as 1.0 for all time. All loads will be applied to
the transient solution, regardless of whether an explicit time
function is defined.

7.3.14.1. Reading Loads from Exodus Data Loads may be read in from previous
analyses when stored in the input exodus file. These are read using an appropriate
function. See sections 7.2.2, 7.2.3, and 7.2.4 for functions which read data on nodal values,
on a node set and on a surface respectively.

Note that exodus read functions do not trigger follower stiffness calculations when used as
follower loads. A warning is issued when the follower stiffness calculation is skipped.

Also, note that exodus read functions ignore distribution factors on sidesets. A warning is
issued in this case when the distribution factors are ignored.

7.3.15. Random Pressure Loads

Input for random loads can be complicated, though the loads are not uncommon and are
important for many applications. 1 This type of random pressure loading is developed for
use of direct transient loading typical of a turbulence load on a hypersonic vehicle.
Throughout the development, we maintain a concept of flow direction, and correlation
distances that may be different in flow and transverse directions. By computing the random
pressure fields as part of the time evolution, we avoid the need to compute these complex
quantities before the run. A linear solve at each solve is required to compute the loads.

A correlation matrix is the inverse Fourier transform of the spectral density matrix. It is
most general type of input. Load option RandomPressure provides a simplified means of

1A hypersonic vehicle is a prime example of a random loading. Turbulence provides a time varying loading
which has a limited spatial and temporal correlation on the surface of the hypersonic vehicle.

371

specification of the loading. The material in this section is consistent with and builds on
Section 3.8.7.

Subsection Random Pressure Loading section Loads and Materials of the Theory Manual42

describes the approximations involved in the implementation. These approximations are
summarized in Figure 7-58.

The simplified correlation matrix is not general, but may be use-
ful for a large class of problems. It has the following limitations.

1. The system must be time stationary.

2. The correlation function must be separable (a product of
temporal and spatial correlations).

3. The same PSD shape must apply throughout the entire
hypersonic vehicle body. The PSD may be scaled as a
function of z, but there may be no change in the shape.

4. The PSD must have a cutoff. The time integration must
occur above this cutoff frequency.

5. By default, the temporal function is represented by a sinc
function. This may be replaced by a user defined temporal
function.

Figure 7-58. – RandomPressure Loading Approximations.

The random loading is a component of the loads section. An example is shown here, and
described in Table 7-122.

Loads
sideset 22

RandomPressure
correlation_length_z = 2.0 // required
correlation_length_r = 0.67 // required
cutoff_freq = 16.8 // required
correlation_function = 20 // defaults to sin(x)/x
PSD_scale_function = 10 // defaults to Sigma=1
NTimes = 5 // defaults to 5
coordinate 1 // defaults to basic frame
MinimumNodalSpacing = 1.0e-5 // defaults to 1.0e-8
NumberOfInitializationSteps = 100 // defaults to 5

END

Details for the parameters to the correlation matrix input are described below.

372

Parameter Type Default Comment
correlation_length_z real required spatial decay in flow direction
correlation_length_r real required spatial decay orthogonal to the flow
cutoff_freq real required cutoff frequency
correlation_function string sin(tωc)

tωc
PSD_scale_function string Σ(z) = 1
NTimes int 5
coordinate string 0 defaults to basic frame
MinimumNodalSpacing real 1.e−8 smallest allowable inter-node spacing
Random_Seed int ignore random number seed
NumberOfInitializationSteps int 5 iterations to improve initial

spatial distribution

Table 7-122. – Random Pressure Inputs.

correlation_length_z Spatial decay in the flow direction, Lz. The flow direction is the Z
axis of the coordinate frame. The correlation function C(∆Z) is proportional to
exp(−∆Z/Lz), where ∆Z is the distance between two points in the flow direction.

Correlation_Length_R Correlation_length_r is the spatial correlation distance in the
radial or transverse direction. The correlation function is proportional to
exp(−

√
(∆x2 + ∆y2)/Lr).

Cutoff_freq The cutoff frequency, Fc is important to the operation of the RandomPressure
algorithm. No energy may be found in the PSD above this frequency. The time
integrator may not sample the system lower than this frequency, i.e. dt < 1/Fc.

NTimes The matrix is proportional to the number of time values assembled, and affects
the interpolation as described in the Theory Manual section Loads and Materials
subsection Alternative Derivation Based on Lagrange’s Equations subsubsection
Separation of spatial and temporal components

Typically, few terms are required. Note that there are 2∗NTimes+ 1 terms in the
sum, and the dimension of the correlation matrix grows commensurately. The
number may depend on the interpolation time step and on the shape of the PSD.
Default=5 (which produces 11 terms in the sum).

CORRELATION_FUNCTION The temporal time function, whose argument is (t1− t2).
By default this function is sin(x)/x, with x= πFc(t1− t2). It must be an even
function of the argument.

PSD_SCALE_FUNCTION provides a means of scaling the power spectral density as a
function of flow direction. This type of input requires that the PSD have the same
shape at all locations, but the value may be scaled. Scaling the PSD effectively scales
the standard deviation of the pressure. Default is no scaling. The function must be
positive for all values of the coordinates.

373

coordinate is an optional coordinate frame that is used to define the flow direction. The Z̃
component of that frame is the direction of flow. By default, the basic frame is used.

MinimumNodalSpacing Some models can contain co-located nodes on the surface where
the random pressures are to be applied. This can cause the correlation matrix to be
singular, since the repeated nodes would result in two identical rows in the
correlation matrix. The MinimumNodalSpacing keyword allows the analyst to
specify the smallest inter-node spacing (absolute) that is allowed on the surface where
the random pressure is being applied. Any nodes that are closer than that tolerance
will be treated as identical in the correlation matrix manipulations. The Exodus file
and corresponding nodal output will not be changed. This will avoid a singular
correlation matrix, but does not alter the mesh database.

NumberOfInitializationSteps Initially the pressure spatial distribution may be too
correlated. Mesh resolution exacerbates this issue. Increasing the
NumberOfInitializationSteps mitigates the issue. Each initialization step requires
about as much CPU time as an implicit time step. Default=5 (values below 5 are
discouraged).

OMEGA_C Deprecated. Use Cutoff_freq.

ALPHA_Z Deprecated. αz = 1/Lz.

BETA_T Deprecated. βt = 1/LR.

The computation of the random pressure loads depends on matrix factorizations
(subsection Random Pressure Loading section Loads and Materials of the Theory
Manual42).

However, the Cholesky matrix factorizations are defined only if the correlation matrix is
(numerically) non-singular. At this time, the code stops with an error if this occurs. A
common cause of this error is using too many time steps NTimes with too small a time
step. For this reason, the condition number of the temporal correlation matrix is always
evaluated, and, if it is singular, the cutoff frequency is decreased. In this case the warning
message

Singular temporal correlation matrix
Increasing Delta_T to ...

will be printed in the result file for processor 0. Another source of ill conditioning is the use
of large correlation lengths correlation_length_z or correlation_length_r, or a fine mesh.

For this reason inverse condition number estimates are printed in the result files. An
inverse condition number is the relative distance to a singular matrix, and is denoted
Rcond, for reverse condition number. In double precision, a Rcond below 10−12 indicates
that the factorization may fail. The precise statements in the results files are

374

TemporalCorrelationMatrixRcond = ...
Estimated SpatialCorrelationMatrixRcond = ...
Estimated CorrelationMatrixRcond = ...

7.3.16. Frequency Dependent Loads

Frequency dependent loads may be applied for frequency response analysis. The real part
of these loads is applied exactly as above with the understanding that the functions
referenced apply to frequency not time. Frequency dependent loads may include an
imaginary component. This is done by prefixing the load types listed above by the letter
“i”. Thus, the imaginary part of the load uses these load types.

For Complex Analysis
Option Parameters
iforce val1 val2 val3
imoment val1 val2 val3
igravity val1 val2 val3
ipressure val1
itraction val1 val2 val3

A function should be associated with each such load. An example follows.

Loads // example for FRF analysis
nodeset 1

force=1 0 0 // the real part of the load
function=11

nodeset 2
iforce=1 0 0 // the imaginary part of the load
scale .707
function=12

END

7.3.17. Modal Force Loading

Modal force loading can be used to directly load specific modes in the modaltransient
solution case. An example input follows.

ECHO
modalvars

END
Loads

body
ModalForce

375

function gravity_function
END
FUNCTION gravity_function

type table
tablename 28

END
TABLE 28

dimension 2
size 100 9
delta 0.000005 1
origin 0.000005 0
datafile=Qforce.txt

END

The format of Qforce.txt is identical to the output from a traditionally loaded modal
transient solution with echo modalvars. echo modalvars does not print out a load at
time zero, so either the load at time zero should be added to the datafile, or origin should
be used to specify the first time in the file. Loads can be linearly interpolated between time
values in the datafile. With redundant modes, some modes can change between subsequent
Sierra/SD runs. Care should be taken to ensure the load are applied correctly.

Full details of table input are discussed in Section 3.8.19. Only two-dimensional tables are
supported for modal force loading, with rows representing equally spaced time steps and
columns representing each mode. Modal force loading is the only load type that supports
two-dimensional table inputs.

7.3.18. Rotational frames

Often when analyzing rotating structures, it is convenient to perform the analysis in the
rotating frame where the structure is not undergoing large displacement. Analysis in that
frame introduces “fictional” or “pseudo” forces with centrifugal, 2 Coriolis and Euler
contributions. These are termed “forces”, but the contributions are introduced from
operating in a non-inertial coordinate frame as described in the Theory Manual section
Loads and Materials subsection Analysis of Rotating Structures.

The associated keywords are found in Table 7-123.

The Galerkin framework used for finite elements, introduces matrices associated with these
pseudo forces. In addition to the standard mass and stiffness matrices that arise in linear
structural dynamics, force-based matrices are also common. These include follower stiffness
matrices from applied pressures, and Coriolis/centrifugal matrices in rotating structures.

2There is often confusion about the description of the “centrifugal” or “centripetal” term. The centripetal
force is a real force applied in the inertial coordinate frame which causes an object to travel in a circular
path. The centrifugal force is the pseudo-force that appears from inertial terms in a rotating coordinate
frame.

376

Option Parameters
angular_velocity vel1 vel2 vel3
angular_acceleration accel1 accel2 accel3
coordinate coordinate name

Table 7-123. – Rotating Frame Parameters.

Input 7.15 provides the corresponding Sierra/SD input for a rotational load applied to a
body. The centrifugal stiffness and Coriolis coupling matrices are both derived from the
rotational velocity of the structure, which uses the keyword angular_velocity. The
vector angular velocity components are specified after the angular_velocity keyword.

An angular acceleration, Ω̇, may also occur, as when an aircraft carrying a weapon makes a
rapid course correction. This angular acceleration results in a pseudo-force, called the
Euler force, that is tangent to the angular acceleration vector. Application of angular
acceleration is restricted to linear and nonlinear statics analysis in Sierra/SD.

For static loads analysis angular acceleration and angular velocity are applied
independently A similar static loads analysis of a rocket provides envelope survivability
information during launch.

LOADS
body

angular_velocity = 0.0 2.0 0.0
coordinate = 1

body
angular_acceleration = 0.0 0.0 3.0
coordinate = 3

END

Input 7.15. Application of centrifugal and Euler forces. The loads above apply
an angular acceleration of 3 radians/s2 in the Z-direction of coordinate frame 3,
and an angular velocity of 2 radians/s in the Y -direction of coordinate frame 1.

Angular acceleration is applicable only in statics.

Left-hand Side contribution

Angular velocity introduces both left-hand side matrices and right-hand side force vectors.
The algebraic expression for dynamics can be written as follows.

(Km+Kg +Kcen)u+ (C+Ccor) u̇+Mü= fextern+fcen (7.9)

Km is a material matrix,
Kg is the geometric stiffness matrix correction,

377

Kcenis the centrifugal softening term,
C is the damping/coupling matrix,
Ccoris the Coriolis coupling matrix,
M is the mass matrix,
fexternis the external force vector,
fcenis the centrifugal force, and
u is the displacement.

Except for Kg, every matrix term is constant, depending only on the geometry and the
elements. The Coriolis and centrifugal terms are also independent of displacement, u,
though they depend on Ω.

For linear analysis (both linear statics and linear transient dynamics), the geometric
stiffness terms is zero. However, since this term depends on stress, which is proportional to
displacement, the geometric stiffening is typically proportional to the square of the angular
velocity. As the geometric stiffening is typically of the same magnitude as centrifugal
softening (also proportional to Ω), confusion can arise.

In multicase analyses, the matrices are typically generated only once; exceptions occur for
nonlinear solutions and for the tangent method. It is recommended that linear solution
cases include an update to the tangent stiffness matrix as part of a multicase solution. An
example is shown in input 7.16.

Solution
case s1

statics
load=1

case up
tangent

case s2
statics

load=1
End

Input 7.16. Example using Tangent Update

Limitations

There are a number of limitations for the rotational frames implementation.

1. Static analysis appropriately applies the centrifugal and Euler forces. The left-hand
side matrix for geometric stiffness is only properly updated if the tangent step is
applied.

378

2. In a single case solution, eigenvalues will include Coriolis and centrifugal terms if
angular velocity is specified in the loads section. This is the case even though there
is no true load for QEVP.

3. Currently, QEVP solutions can be computed for rotating structures only if there are
no rigid body modes in the structure. An example is shown in input 7.17. In this
case, a static preload with a rotational load is computed, followed by a tangent
update, and then followed by a QEVP analysis. This type of analysis would be useful
for examining the effect of rotational loading on the modes of a structure. However,
this will only work correctly if there are no rigid body modes in the structure.

4. The user is limited to one rotational frame per analysis. In other words, the whole
body must be rotate together. One could not model a helicopter in a fixed frame and
the associated rotor in another.

5. Rotational loads applied in the rotating frame are linear loads, and do not require a
follower keyword.

6. For transient dynamics, the time varying function must be 1.0.

7. Angular acceleration is only applicable to statics analyses.

8. Superelements do not retain full accuracy. It is recommended that interface dofs for
superelements retain either 3 or 6 degrees of freedom.

9. The Boundary section applies to all cases in a multicase solution.

Solution
case ’statics’

statics
load=1

case ’up’
tangent

case ’qevp’
qevp

method=projection_eigen
nmodes=100
load=1

End

Input 7.17. Example of using qevp for Tangent Update

379

NOTE:
A time varying function with magnitude 1.0 for the full time
span should be used for time varying solution cases. Additional
work would be required to apply general loading patterns.

Finally, for optimal accuracy, the user can update the tangent
matrix at the expense of greater computational expense.

7.3.19. Rigid Body Filter for Input

For some analyses, it is advantageous to remove rigid body components of a solution. The
input forces may be filtered so that only self-equilibrated forces are applied. This process of
removing the rigid body component from the solution is sometimes referred to as ‘Inertia
Relief’ or ‘Inertial Relief’.

The rigid body filter is applied using input in the parameters section (3.3) and is
illustrated in the example of input 7.18. The filtered force values can be output by
requesting the force output option (section 8.1.34).

While the filter can ensure equilibrated loads, additional parameters may be required to
help the linear solver address the singularity generated by floating structures. Typical
input is provided here, with details in the appropriate sections. The constrain_rbms
solver option must be used in conjunction with FilterRbmLoad only when the rigid body
modes are in the null space of the system matrix. For example, constrain_rbms should
be used for statics where the system matrix is the stiffness matrix, but constrain_rbms
should not be used for transient where the system matrix includes inertial terms.
Currently, only GDSW supports selectively constraining rigid body modes. The
FilterRbmLoad parameter is supported for transient

and static solution cases. For other solution cases this parameter will have no effect on the
solution. 3 The similar capability for modal solutions is presented in Section 4.32.

Solution
statics
solver=gdsw
solver_options=gdsw_options

End

Parameters
FilterRbmLoad=allStructural
RbmTolerance=1e-10

End

3Modal solutions, such as modaltransient, do not use FilterRbmLoad. However, see41 for means of
accomplishing the same process by direct use of the geometry rigid body modes.

380

solver_options gdsw_options
constrain_rbms "X Y Z RotX RotY RotZ p"

End

Input 7.18. Rigid Body Filter Example Input

The names of the rigid body modes to constrain are the same as those setting boundary
conditions 7.1. The ‘p’ keyword refers to the constant pressure in a structural acoustics
problems, and the other six are the typical rigid body modes of a structure in Cartesian
coordinates. 4

If the rigid body filter is activated, Sierra/SD calculates the corresponding rigid body
modes, checks the residuals, and report a fatal error if the residual norms,

‖KΦr‖2
‖Kd‖∞‖Φr‖2

are larger than RbmTolerance. The default RbmTolerance is 10−10. Each module that
needs the rigid body modes will recalculate them.

7.3.20. RanLoads

The RanLoads section is used to provide input information for spectral input to a random
vibration analysis. In a random analysis, the output response relates to the input, as

follows.

ai is the output quantity at degree of freedom, i. For example, ai may be
the acceleration power spectrum, measured in (in/s2)2/Hz.

Hij is the transfer function from input i to dof j.
Sjk is the input power spectrum. Typically, this is in units of (force)2/Hz.

It is dimensioned to the number of independent inputs.
Furthermore,

ai(ω) =
∑
j,k

HT
ji(ω)Sjk(ω)Hkm(ω). (7.10)

The RanLoads section provides a specification for Sjk(ω). Note that this input will
contain both a spatial and spectral component. In Sierra/SD, we require that each
matrix element in the input power spectrum be expressible as a product of spectral and
spatial components. Yi is a spatial loading term associated with the ith row and column of
S, and Fij is a spectral only matrix function.

Sij(ω,x) = Yi(x)Yj(x)Fij(ω) (7.11)

4The keywords are “x”, “y”, “z”, “RotX”, “RotY” “RotZ” and “p”. The set of these keywords must be
enclosed in quotation marks.

381

It typically has units of 1/Hz.

The RanLoads section contains the following required keywords.
Parameter Argument Description
matrix Int/String matrix-function identifier
load Integer row/column identifier

The matrix keyword identifies the appropriate matrix-function (see Section 3.8.17). The
matrix-function determines the dimensionality of the input (using the dimension
keyword). It also determines the spectral characteristics of the load.

The spatial characteristics (which correspond to Yi in equation 7.11) are determined in
load sections within the RanLoads definition. There must be exactly as many load
sections as the dimensionality of input. For example, if the SFF matrix is 3×3, then there
should be 3 separate load sections. Each load section within the RanLoads block must be
followed by an integer indicating to which row/column it corresponds. The details of each
load section are identical to the over all loads section (see 7.3) except that no
time/frequency function is allowed. Note that only one load is required per row of the SFF
matrix, but each entry of the matrix may have a spectral definition (identified by a real
and/or imaginary function).

The following example illustrates the definition of a single input specification. The loading
is scaled so that a 1000 lb (or 454 kg) mass located on the input point (in nodeset 12 here)
is scaled to produce a unit g2/Hz loading.

RanLoads
matrix=1
load=1

nodeset 12
force=0 1 0
scale 1.00e3 // needed to convert to g
// loads input in lbs. The PSD is in g^2/Hz.
// F = accel * mass
// = accel * (scale_factor)
// = accel * ((1000*.00259)*384.6)

END

Scaling the input force for a random vibration analysis can be confusing. 5 This is
especially true since enforced acceleration cannot be used to apply the force . The example
above uses United States customary units. The wtmass parameter has been applied. In SI
units, wtmass= 1, and the force would need to be multiplied by g to apply the input as
acceleration in g’s.

5Note that we are scaling the spatial forces, Yi, which are combined as a product in equation 7.11. Thus,
the scale factor is linear in the load. The resulting input power spectrum, Sij , will contain the square of
the scale factor.

382

The input acceleration may be examined by evaluating the output PSD at the input degree
of freedom. This is done by putting the applied load set into the frequency section (8.5),
and adding the acceleration keyword. The output is in the native units of analysis. For
the example above, the output will be in (in · lbm/s2)2/Hz, and must be divided by
(386.4)2 to convert to g2/Hz.

7.4. Initial Conditions

Initial conditions are specified via the initial-conditions section. The initial conditions
are used as the initial state for transient analysis. Both linear and nonlinear transient are
supported. The variables supported for initial conditions are given in Table 7.4.

Keyword Field Names Description
displacement dispX, dispY, dispZ, Translational displacement

displacement_x,
displacement_y,
displacement_z

velocity velX, velY, velZ, Translational velocity
velocity_x,
velocity_y,
velocity_z

rotation rotX, rotY, rotZ, Rotations for beams,
rotational_displacement_x, shells, etc.
rotational_displacement_y,
rotational_displacement_z

rotational_velocity velRX, velRY, velRZ, Rotational velocity
rotational_velocity_x, for beams, shells,
rotational_velocity_y, etc.
rotational_velocity_z

acoustics acoustics Primary acoustic variable,
usually pressure

acousticsdot acousticsdot Derivative of primary
acoustic variable,
usually particle velocity

Each term may be initialized in one of three ways. Initial conditions may be either

1. Read in from the Exodus file,

2. specified globally in the initial-conditions section,

3. or specified on a block-by-block basis in the input deck.

383

7.4.1. Reading Initial Conditions from the Mesh File

Initial conditions can be read from fields present on the mesh file. This method would
usually be used when handing of initial conditions from the end state of a previous
Sierra/SD or Sierra/SM run. The time command can be used to set which time step
from the exodus file the initial conditions are read from. Valid options for time include
reading from a specific time, start time of the transient simulation, or from the first or last
step of the Exodus database. By default, time is set to the first step of the input Exodus
database.

step = <int>time_step|last|first
OR
time = <real>time_val|last|first|transient_start_time

Note that as with Exodus in general, steps are one-based: step = 2 refers to the second
step on the mesh. In the case of time = <real>, the step chosen will actually be the
nearest step with a time greater than or equal to the requested value.

An example of initial conditions input from Exodus file is given below. In this case,
Sierra/SD will read both velocity and displacement initial conditions from the last time
step of the Exodus file using the field names in Table 7.4.

INITIAL-CONDITIONS
velocity=from_file
rotational_velocity=from_file
displacement=from_file
rotation=from_file
time = last

END

7.4.2. Setting Initial Conditions in the Input Deck

An example of setting initial conditions globally is given below.

INITIAL-CONDITIONS
velocity=1 0 0

END

In this case, the entire model is given an initial velocity of 1 in the x direction, and 0 for
the y and z directions.

An example of the third option (block-by-block specification) follows.

384

INITIAL-CONDITIONS
velocity=by_block

END

BLOCK 1
velocity = 1 0 0

END

BLOCK 2
velocity = 0 1 0

END

In this case, the velocity is read in from the input deck on a block-by-block basis. If two
blocks share nodes and are given different initial conditions, then the results may be
unpredictable, since the common nodes on the blocks would have conflicting initial
conditions. Thus, it is recommended to verify that blocks are disjoint before specifying
different initial conditions on a block-by-block basis.

Initial conditions are currently only implemented for transient analysis. They can also be
used in multicase solutions, but they will only have an effect on the transient analysis that
are in the multicase solution. For multiple transient analysis in a multicase, only the first
transient analysis will use the initial conditions. The subsequent transient cases will get
initial conditions from the previous case.

Usage Guidelines Care must be taken when setting initial conditions. If initial
conditions are set from a Sierra/SM analysis, then that analysis must in general have
small deformations. For example transferring an initial condition displacement from
Sierra/SM with significant rigid body rotation would yield large stress in a linear
Sierra/SD analysis due to the incompatible linear and nonlinear deformation state.
Additionally, for elements like shells the nodal rotations must be compatible with the
overall translational displacement.

7.5. Use cases for initial acceleration

All these cases can be applied as a spring mass system.

1. Apply force, displacement and velocity as an initial condition for transient dynamics.
Compute,

An = (Fapplied+Cvn+Kdn)/M
With a constant force, we should get a constant acceleration.

2. Apply a static load to the mass on the spring. Then apply (in a second case) the
same load as a transient load. This should also result in a constant displacement.

385

3. TSR read. Read a static stress to the body. This is usually followed by a subsequent
transient run.

Ring down is expected. Internal stresses are not treated the same as applied forces.
Applied external forces are not carried forward. Internal stresses are carried forward
in the solution. When you start the transient run, you have an internal force only.
Compute

An = (Finternal)/M

4. receive_sierra_data. Read undeformed coordinates, Xo, and a nodal
displacement, Uo. Compute initial coordinate,

X1 =Xo+Uo.

Afterwards, no load is required to maintain the X1 configuration. Initial stresses may
cause a deformation from that initial system. We may get velocity, force, and
acceleration from file.

5. Prescribed acceleration. Ao = a(t). This is applied only on a surface or node set. We
convert this to a prescribed force, and treat it identically to an applied force.

6. Restart. A(0), v(0) and d(0) are prescribed at all locations. No solve needed.

7. There is a jump in force at some time other than t=0. Do nothing. We assume that
the analyst wants it to ring.

7.5.0.1. Summary

• Use velocity, displacement from state change (whether read_sierra, user input, or
multicase). Eigen may store displacement on the database. It is never used in a
subsequent transient or statics analysis. It is always used in modal superposition
cases. We get this by calling them PHI.

• Retain stresses across state change (multicase or read). Some cases retain stresses
(statics, TSR, transient). Eigen may compute stresses, but does not store them on
the database.

• Do NOT retain accelerations or forces across state change. We should use the forces
calculated at that time (in the next state) for computing the balance.

386

8. Output

8.1. Exodus

The outputs section identifies the data to write to the corresponding output files.
Geometry-based finite element results are written to an output Exodus file. The name of
this file is generated by taking the base name of the input Exodus geometry file, and
inserting -out before the file extension. For example, if the input Exodus file specification
is example.exo, output will be written to example-out.exo. When using a multicase
solution (Section 4.2), the case identifier is used in place of out. More details are available
in the file section (3.2).

Non-geometry-based finite element data, including system matrices and tables may be
output in a format that is compatible with MATLAB. These text files have the extension
m. The base file names describe the nature of the output. These files are generated in the
current working directory.

Option Description Section
acceleration acceleration at nodes 8.1.15
acousticlighthill acoustic Lighthill source term N/A
aforce acoustic forces N/A
block_energies block kinetic and strain energies 8.1.31
constraint_info nodal constraint information 8.1.50
disp displacements at nodes 8.1.13
EForce element forces for beams 8.1.38
ElemEigChecks first,seventh, and largest eigenvalues 8.1.11
ElemQualChecks on ‖ off ‖ (any boolean), default is on 8.1.12
energy element strain energy and strain energy

density
8.1.28

eorient element orientation vectors 8.1.43
faa force vector in the a-set 8.1.8
fatigue Fatigue Damage Estimates 8.1.23
force the applied force 8.1.34
GEnergies global sum of energies 8.1.29
globals ensure global output 8.1.30
Kaa stiffness matrix in the a-set 8.1.7
line_weld line weld elements 8.1.39

Table 8-124. – OUTPUT Section Options A-L.

MATLAB output format . In the following example, the mass and stiffness matrices will
be output in MATLAB format, but the displacement variables will not be output. As
usual, output in MATLAB format is distinguished by file names ending dot m. For
example (with one MPI rank) a mass matrix is written to the file Maa.m. Scripts are
provided for assembling the subdomain matrices into the global matrix in MATLAB.

387

Maa mass matrix in the a-set 8.1.4
material material parameter element output 8.1.5
material_direction_1 Local element coordinate system R vector 8.1.6
material_direction_2 Local element coordinate system S vector 8.1.6
material_direction_3 Local element coordinate system T vector 8.1.6
MLumped nodal lumped mass in modal solution 8.1.9
MPhi Mass × Displacement in modal solution 8.1.10
mesh_error mesh discretization errors 8.1.32
MFile MATLAB MFiles 8.1.33
nodal_charge applied charge at nodes N/A
pressure pressure load vector 8.1.44
rainflow Rainflow cycle counter output 8.1.22
reaction_force the Dirichlet boundary reaction force 8.1.36
relative_disp 1D element nodal separation 8.1.40
rhs RHS of system of equations to be solved 8.1.37
statistics Mean and Std deviation of some variables 8.1.51
strain element strain 8.1.16
stress element stress 8.1.18
stress = gp element stresses at Gauss points 8.1.17
principal_stresses element principal stress vectors and magni-

tudes
8.1.19

signed_vonmises element signed von Mises 8.1.21
temperature element centroid temperature 8.1.55
velocity velocity at nodes 8.1.14
voltage voltage at nodes 8.1.55
vonMises element von Mises stress 8.1.20
vrms RMS quantities (random vibration only) 8.1.25
WarningLevel Control of warning messages N/A

Table 8-125. – OUTPUT Section Options M-Z.

All the various options of the outputs section are shown in Table 8-125. The next sections
describe each of the options and their results assuming an input file named example.inp
and a geometry file named example.exo.

Outputs
Maa
Kaa
// displacement

end

388

10 -2 10 -1 10 0

Element Length

10 -2

10 -1

10 0

a
b

s
(E

rr
o

r)

Hex8b Centroid

Hex8f Centroid

Hex8b Surface

Hex8f Surface

O(h)

Figure 8-59. – Convergence of maximum stress at element centroids and surfaces.

8.1.1. Surface Projection of Element Variables

Element output such as stress, strain or temperature is evaluated at the element centroid.
Hexahedra, tetrahedra and prisms support the projection of some element quantities to
element faces. We do this by sampling the gradients of the element shape functions at the
local coordinates associated with that face’s centroid.

Notes:

1. Surface Projection is triggered by the output_sideset_data parameters flag.

2. Surface Projection results are stored as sideset variables on the Exodus mesh.

3. Only some outputs have been enabled for surface projection, most notably the strain
tensor, stress tensor, and von Mises stress.

4. Due to the nature of bubble shape functions when sampled away from the element
centroid, the default Hex8 element (Hex8b) will report skewed surface projection
results, and is not expected to give the same benefit as other volumetric elements,
given the same displacement field.

5. Even when using the bubble hex element, surface projection is expected to give a
more accurate representation of maximum stress, given that the maximum stress
occurs on a sideset figure 8-59.

389

8.1.2. Database Name

Option database name in the outputs section allows the user to specify an output file
name instead of the default behavior as described above. As before, -out (or the case
name for multi-case solutions) will be inserted before the file extension.

For instance, where the geometry file name example.exo would previously result in the
output file example-out.exo, the user could instead specify database name =
new_example.exo, which would result in output written to new_example-out.exo.

8.1.3. Properties

Exodus Output Properties is currently BETA release.
Enable with the “- -beta” command-line option.

A number of options are available to control the contents of Exodus output files. These
options can be used to shrink the output size or change the format of the output file.
These properties are preceded by the property keyword in any input deck. Available
properties are given in Table 8-126.

The below example parameters would provide minimal output file size for a run.

OUTPUT
property integer_size_db = 4
property real_size_db = 4
property compression_level = 9
maximum_name_length = 32

END

390

Table 8-126. – Exodus Property Output Options.
Property Type Description
integer_size_db Number of bytes for integers in Exodus output. Valid sizes

are 4 or 8. By default, the size is the same as used
in the input mesh file. 8 byte integers are required
if node/element IDs greater than about two billion are used.

real_size_db Number of bytes for real numbers in Exodus output. Valid sizes
are 4 or 8. Default is 8, double precision. Use of 4
byte single precision output will roughly halve the
output size but reduce output accuracy. Of
particular note, Do not use four byte reals for
restart.

compression_level Compression level can be given values from zero to nine.
Zero is no compression and nine is maximum compression.
The default is generally zero compression. The compression
level provides only a suggestion to the Exodus library, the
actual amount of compression will vary. Potentially
compression can reduce the size of the file by a factor of
three or more. Compressed files may be incompatible with
some post-processors.

maximum_name_length Sets the maximum allowable name length for Exodus field names.
Valid values are in the range (32,256], and the default is 64.
Increasing this property can be useful for example if a user has
very long user output names, which would otherwise be truncated.
Alternatively, it can be lowered to shrink the file size if desired.

391

8.1.4. Maa

Option Maa selects the analysis-set mass matrix (if it exists) for output to the file Maa.m as
usual 8.1.

8.1.5. Material

The material keyword will output material properties for each element. Currently, this
capability is only enabled for elasticity calculations, and is also not enabled for Lamé
materials or isotropic_viscoelastic_complex materials.

8.1.6. Material direction

Local coordinate systems may be defined to orient directional materials (sections 3.7
and 5.7.1 and section 5.7.2.3). The material_direction_1, material_direction_2,
and material_direction_3 outputs provide the element local coordinate system (r̂, ŝ, t̂)
vectors at each element. Visualizing these vectors can help inform if material coordinate
systems have been setup as intended. Additionally, these coordinate vectors are the rows of
an 3×3 rotation matrix for transforming quantities between the global (X, Y, Z) and local
(r̂, ŝ, t̂) coordinate systems within the element.

8.1.7. Kaa

Option Kaa will output the analysis-set stiffness matrix to a file named Kaa.m as usual
8.1.

8.1.8. Faa

Option faa will output the analysis-set force vector (if it exists) to a file named Faa.m.
following the standard convention 8.1.

8.1.9. MLumped

Option MLumped will output the lumped mass matrix to the Exodus mesh as a nodal
variable. MLumped is only implemented for the Eigen solution case. The lumped mass
output is based on the analysis-set reduced mass matrix. Thus, mass on fixed degrees of
freedom will be zero.

392

MLumped Variable Names
M_X (x translation)
M_Y (y translation)
M_Z (z translation)
M_RX (x rotation)
M_RY (y rotation)
M_RZ (z rotation)
M_A (acoustic)
M_V (voltage)

M_T (temperature)

8.1.10. MPhi

Option MPhi triggers computation and output of the mass matrix product MΦ to the
Exodus file for the mode shapes, Φ, computed in the previous modal solution. MPhi is
only implemented for the modal solution case. A consistent mass matrix is used. Mass
matrix output is explained in Section 8.1.4. Like the mode shapes, the mass matrix is
defined only on the analysis-set dofs. An ASetMap is also provided. The MΦ vanishes on
fixed dofs. The names of the different dofs at a node are specified in Table 8.1.10.

MPhi Variable Names
MPhi_X (x translation)
MPhi_Y (y translation)
MPhi_Z (z translation)
MPhi_RX (x rotation)
MPhi_RY (y rotation)
MPhi_RZ (z rotation)
MPhi_A (acoustic)
MPhi_V (voltage)

MPhi_T (temperature)

8.1.11. ElemEigChecks

Option ElemEigChecks will turn on the element output of the lowest eigenvalue, the 7th
eigenvalue (commonly the first flexible eigenvalue), and the largest eigenvalue of the
element stiffness matrix. The output will be stored in the Exodus output file. The
element variable names for the 1st eigenvalue, the 7th eigenvalue, and the maximum
eigenvalue are ElemEig_1st, ElemEig_7th, and ElemEig_max, respectively. Note that this
output is not supported for rigid elements (Rbe2, Rbe3, Rrod) and will be skipped on
those blocks. Finally, if ElemEig_1st < -1e-12 ElemEig_max, a negative eigenvalue
warning will be printed.

393

8.1.12. ElemQualchecks

Option Elemqualchecks takes a boolean, e.g., on (the default) or off. Unless this option
is off, all the elements in the input file are checked for quality using various element
quality metrics. If the option on is selected and the element’s condition numbers falls
outside the acceptable range, a warning message is printed. A summary is also printed,
reporting the min/max quality of each block in the mesh.

The Tet4, Wedge6, Hex8, Tria3, and Quad4 elements implement a condition number from
Verdict.56 The acceptable limit for that warning may be modified by the condition_limit
parameter, specified in the Pa-
rameters section (3.3), and defaults to 106. The following table shows the acceptable ranges.

Element Type Full Range Recommended Range
Tet4 1−∞ 1−3
Hex8 1−∞ 1−8

Wedge6 1−∞ 1−5
Tri3 1−∞ 1−1.3

Quad4 1−∞ 1−4

Additionally, several other element types inherit their condition number from the elements
listed above. Those are listed in the following table.

element uses condition number of element
Tet10 Tet4

CuTet10 Tet4
Hex20 Hex8

HexShell Hex8
Wedge15 Wedge6
Tria3 Tri3
Tria6 Tri3

TriaShell Tri3
NTria Tri3
QuadT Quad4
QuadM Quad4
QuadTM Quad4
Quad8T Quad4

QuadS_GY Quad4
NQuad Quad4
KHQuad Quad4

Table 8-127. – Elements using other elements condition number.

These approximations are optimistic as the condition number of the element is based on
the overall element topology and rather than the specifics of the element formulation. For

394

example the KHQuad, NQuad elements use a bilinear mapping while the QuadT uses two
affine mappings (behaving as two triangles side by side.) In other cases elements such as
NTria and Tria3 both use affine mapping but different details of element formulations may
make them sensitive to different types of poor shapes. For higher order elements, such as
Tet10 or Hex20 the element quality is typically determined just by the vertex nodes. If the
edge nodes of such elements are not at the edge midpoint these may degrade actual
element behavior in a way not detected by these quality metrics.

Some Sierra/SD elements that have condition numbers and can invert do not implement
a condition number. This is true for InfiniteElement, PHex, PTet, PWedge and
PmlIsoSolid elements. Condition numbers are also unimplemented for rigid elements,
superelements, and all 1 dimensional and 0 dimensional elements.

8.1.12.1. Additional Volumetric Element Shape Metrics
In addition to condition number quality checks solid elements are checked for negative
volumes. Negative volume can occur if the node ordering for the element establishes a
“height” vector using the right-hand rule that is in the opposite direction of the actual
element height. In other words, the nodes should normally be ordered in a counter
clockwise direction on the bottom surface of the element.

These negative volumes are checked by evaluating the Jacobian at the element integration
points. A negative Jacobian indicates the element is either fully inverted, or poorly shaped.
The various solid element formulations have differing degrees of rigor in these checks. For
example at Tet10 element evaluates these Jacobians based on only the vertex node positions
and allows runs to proceed with a negative Jacobian by using the absolute value. While
the CuTet10 more rigorously checks the sign of the Jacobian at each integration point.

Some codes such as NASTRAN, are insensitive to this ordering. If element checks are run,
then Sierra/SD will correct (and report) any solid elements found to have negative
volumes. Without these corrections, the code will continue, but results that depend on
these elements are suspect.

It is strongly recommended that any Exodus file with negative volumes be corrected.

8.1.12.2. Additional Shell Shape Metrics
In addition to a shape based condition metric shell elements output a “Thickness Ratio”
metric as the ratio of the thickness t to a length l,

t/l. (8.1)

The length is defined as the minimum diagonal for quadrilaterals or the minimum edge
length for triangular elements. The acceptable range may be modified by the
min_thickness_ratio and max_thickness_ratio parameters, specified in the Parameters
section (3.3), and defaults to 10−5−10. Shells with large thickness to length ratios can be

395

ill-conditioned and have stability problems. Elements with very small length to thickness
ratio can also be ill-conditioned due to a vanishing rotational stiffness term.

8.1.12.3. Additional Beam Shape Metrics
Beam elements implement a “Area Ratio” metric as the ratio of cross sectional width
sqrt(a) to element length l. √

a/l (8.2)
where a is the cross-sectional area, and l is the beam length. The acceptable range may be
modified by the min_area_ratio and max_area_ratio parameters, specified in the
Parameters section (3.3), and defaults to 10−5−50. Additionally, beam elements also
implement a bending moment metric:

I1/Is (8.3)
where I1 is first bending moment, and Is is the bending moment of a square cross-section
(a2/12). And likewise for I2 (the second bending moment). The acceptable range may be
modified by the min_moment_ratio and max_moment_ratio parameters, specified in the
Parameters section (3.3), and defaults to 10−4−104.

Nbeam elements (section 6.10) also implement an offset length ratio metric:

|l− l0|/l0 (8.4)

where l is the beam length with offsets, and l0 is the length without. The acceptable
maximum value may be modified by the max_offset_ratio parameter, specified in the
Parameters section (3.3), and defaults to 0.15. This is consistent with the GEOMCHECK
condition for NASTRAN CBAR elements, which the Nbeam was developed from.

Beams with properties outside of the listed ranges will have very poor numerical
conditioning and may cause issues for accurate and robust solution.

8.1.13. Displacement

Option disp will output the displacements calculated at the nodes to the output Exodus
file. The output file has the following nodal variables.

Variable Description
dispX X component of displacement
dispY Y component of displacement
dispZ Z component of displacement
rotX Rotation about X
rotY Rotation about Y
rotZ Rotation about Z

In addition, if the analysis involves complex variables (ceigen Section 4.20.2, frequency
response analysis such as ModalFrf or sa_eigen), then the imaginary vectors are also

396

included. The imaginary component of the vector has “imag” prefixed to the name. For
example, the imaginary component in the X direction is “imagDispX”.

8.1.14. Velocity

Option velocity will output the velocities at the nodes to the output Exodus file.

8.1.15. Acceleration

Option acceleration will output the accelerations at the nodes to the output Exodus
file.

8.1.16. Strain

Option strain will output the strains for all the elements to the output Exodus file. The
total strain ε, elastic strain εe, and thermal strain εθ are defined by:

ε=1
2
(
∇u+∇uT

)
(8.5)

εe =ε− εθ (8.6)
εθii =α∆T (8.7)

They can be requested separately by using the options

• strain: ε

• elastic_strain: εe

• thermal_strain: εθ.

Strains will be output for shell elements. The output variable names start SStrain. Shell
elements output engineering strain. E.g. shells output εxx, εyy, τxy where τxy = 2εxy. This
is distinct from solid elements which output strain as εxx, εyy, εzz, εxy, εyz, εxz. This
difference in strain definition means that for an equivalent deformation a shell element will
report twice the numerical shear strain that a solid element will report even though the
two shear states are identical.
SStrainX1, SStrainY1, SStrainXY1 - top layer of the shell
SStrainX2, SStrainY2, SStrainXY2 - mid-plane of the shell
SStrainX3, SStrainY3, SStrainXY3 - bottom layer of the shell

For elastic strain,
SElasticStrainX1, SElasticStrainY1, SElasticStrainXY1 - top layer of the shell
SElasticStrainX2, SElasticStrainY2, SElasticStrainXY2 - mid-plane of the shell
SElasticStrainX3, SElasticStrainY3, SElasticStrainXY3 - bottom layer of the shell

397

and for thermal strains we have
SThermalStrainX1, SThermalStrainY1, SThermalStrainXY1 - top layer of the shell
SThermalStrainX2, SThermalStrainY2, SThermalStrainXY2 - mid-plane of the shell
SThermalStrainX3, SThermalStrainY3, SThermalStrainXY3 - bottom layer of the shell

Strains are evaluated in the local element coordinate system. The local element coordinate
system and also the ordering of the layers both depend on the ordering of the element’s
nodes.

The following strains will be output for volume elements:

VStrainX, VStrainY, VStrainZ,
VStrainYZ, VStrainXZ, VStrainXY

Likewise, for elastic and thermal strains, we have

VElasticStrainX, VElasticStrainY, VElasticStrainZ,
VElasticStrainYZ, VElasticStrainXZ, VElasticStrainXY
VThermalStrainX, VThermalStrainY, VThermalStrainZ,
VThermalStrainYZ, VThermalStrainXZ, VThermalStrainXY

Note that these strains are in the global coordinate system, not the local coordinate
system.

For more information on stress/strain recovery, see Section 8.7.

8.1.17. Strain = GP

An output specification of strain = GP reports strain at the Gauss points of volumetric
elements. For more information, see section 8.1.24.

8.1.18. Stress

Option stress will output the stresses for all supported elements to the output Exodus
file.

This is the Cauchy stress σC = C : εe; see equation 8.6.

398

8.1.18.1. Shell Stresses

The following stresses will be output for shell elements.
SStressX1, SStressY1, SStressXY1, SvonMises1 - top layer of the shell
SStressX2, SStressY2, SStressXY2, SvonMises2 - mid-plane of the shell
SStressX3, SStressY3, SStressXY3, SvonMises3 - bottom layer of the shell

Note that the top layer of the shell is determined by the ordering
of the nodes of the shell, and can be output by using the eorient
output options (see Section 8.1.43). Also, the stresses are in the
local element coordinate system defined by the ordering of the
nodes.

8.1.18.2. Volume Stresses

For volume elements, the stress is always output in the global coordinate system, not the
local coordinate system. The following stresses will be output for volume elements:

Variable Value
VStressX σxx
VStressY σyy
VStressZ σzz
VStressYZ σyz
VStressXZ σxz
VStressXY σxy
VonMises von Mises stress

For more information on stress/strain recovery, see Section 8.7.

8.1.19. Principal Stresses

Option principal_stresses will output the three principal stress vectors and magnitudes
in order of descending signed value. Principal_stresses are only supported for volume
elements.

The magnitudes are output as:

Max_Principal_Stress, Intermediate_Principal_Stress, Min_Principal_Stress

The eigenvectors are output as:

Max_Principal_Stress_x, Intermediate_Principal_Stress_x, Min_Principal_Stress_x,
Max_Principal_Stress_y, Intermediate_Principal_Stress_y, Min_Principal_Stress_y,
Max_Principal_Stress_z, Intermediate_Principal_Stress_z, Min_Principal_Stress_z

399

8.1.20. von Mises stress

Option vonMises will output the von Mises stress for all the elements to the output
Exodus file. For volume elements, the output will be the von Mises stress of the element
as VonMises. Surface elements define stresses on the top, center and bottom layers. The
von Mises stress is reported in the output exodus file at each of the 3 layers (SVonMises#)
as well as the maximum over all layers (VonMises). See section 8.7.3 for more information
on shell stress recovery. For beam elements, the von Mises stress is reported at each stress
recovery point (VonMises_SRP#), as well as a maximum over all stress recovery points
(VonMises). See section 8.7.4 for more information on beam stress recovery.

Note that the von Mises stress is computed and output as a portion of the output if full
stress recovery is requested. This option provides a mechanism for reducing output. Thus,
if full stress output is requested, then the vonMises will provide no additional output. In
other words, specifying both vonMises and stress in the outputs section is redundant,
but does not result in an error.

8.1.21. Signed von Mises Stress

Option Signed_VonMises will output the magnitude of von Mises stress, given the sign of
the principal stress with the largest magnitude. Signed_VonMises is only supported for
volume elements.

The output variable is:

Signed_VonMises

8.1.22. Rainflow Cycle Counting

Option rainflow triggers the rainflow cycle counter to track stress cycles encountered by
each element over time. Rainflow relies on Signed_VonMises to convert the stress tensor
to a scalar signal, and is intended as a preprocessing step to time domain fatigue
calculations. Rainflow is only supported for volume elements, and only in transient
analyses.

The output variables are:

NumCycles, LastCycleAmplitude, LastCyclePeak

These outputs contain insufficient information to be useful on their own except in simple
verification exercises. Rainflow is intended to be a silent dependency of fatigue, rather
than a standalone output option.

400

8.1.23. Fatigue Damage

Option fatigue will output a damage estimate for each element using the stress history of
that element. This process is supported for transient solutions and for modal random
vibration, but in very different ways.

In a transient analysis, fatigue damage is calculated using stress cycles identified by the
rainflow algorithm, and applying those cycles to the Walker damage function:

log10(N) = A1 +A2 ∗ log10(Smax ∗ (1−R)A3−A4)

Where Smax is the peak stress of the cycle, Smin is the minimum Stress of the cycle, and
R = Smin/Smax. The number of cycles to failure N is then related to damage D by:

D = 1/N

A1, A2, A3, and A4 are material constants. Note that a cycle is ignored if Smax <= 0 or
Smax ∗ (1−R)A3 <= A4, because purely compressive cycles are assumed to cause no
damage, and because cycles below the endurance limit causes no damage.

The output variable is:

Damage

In modal random vibration, fatigue is its own solution case. See section 4.12 for more
details. The output variables are:

NarrowBandDamageRate, WirschingDamageRate, ZeroCrossingRate,
PeakFrequency, Damage, Vrms

8.1.24. Stress = GP

An output specification of Stress = GP reports stress at the Gauss points of volumetric
elements. It is currently only available for Hex20, Tet10, and Wedge15 elements. Note that
for a Hex20 there are 27 Gauss points with 6 stresses, for a total of 162 outputs per
element.

The Gauss point ordering follows the description in the paper by Thompson.62 For the
convenience of the reader, that order is reproduced here in Table 8-128.

401

number label suffix X Y Z
1 111 0 0 0
2 112 0 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 -A 0 0
20 012 -A 0 A
21 010 -A 0 -A
22 021 -A A 0
23 022 -A A A
24 020 -A A -A
25 001 -A -A 0
26 002 -A -A A
27 000 -A -A -A

Table 8-128. – Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit
element is 2x2x2, with a volume of 8 cubic units.

402

8.1.25. Vrms

Option vrms will output computed root mean squared (RMS) quantities from a random
vibration analysis. These quantities are written to a separate output file. Quantities
output include the RMS displacement, acceleration and von Mises stress. With the SVD
option, the D matrix terms48 which contribute to the von Mises stress are also output (see
Section 4.17).

8.1.26. Rotational_displacement

Option rotational_displacement will output computed root mean squared (RMS)
quantities for rotational displacement in a random vibration analysis to the output file. In
the frequency section, it will output the corresponding Power Spectral Densities to the
frequency file. (See section 4.17).

8.1.27. Rotational_acceleration

Option rotational_acceleration will output computed root mean squared (RMS)
quantities for rotational acceleration in a random vibration analysis to the output file. In
the frequency section, it will output the corresponding Power Spectral Densities to the
frequency file. (See section 4.17).

8.1.28. Energy

Option energy will place strain energies and strain energy density in the output Exodus
file. Note that the current implementation of strain energies requires updating the element
stiffness matrix, which can be expensive.

8.1.29. GEnergies

Option GEnergies in either the echo or outputs will trigger computation of global energy
sums for the results or output Exodus file, respectively.

strain energy The strain energy is computed from uTKu/2 where u is the displacement
and K is the current estimate of the tangent stiffness matrix.

kinetic energy Computed as vTMv/2. Here v is the velocity and M is the mass matrix.

403

work As a particle moves along x(t) in the force field F , it does work

W (t) =
∫ x(t)

x(0)
F (x)dx

=
∫ t

0
F (τ)ẋ(τ)dτ

The simplest possible approximation is used,

Wn ∼
n∑
i=0

Fiẋi∆t.

Integral approximation errors may introduce inconsistencies with the other energies.
For the outputs case, the total energy is written out at each time step.

8.1.29.1. Known issues:

• The strain energy may not be complete for nonlinear solutions. Linear viscoelastic
materials have contributions that will not be included in this sum.

• The strain energy and work are currently not computed correctly in models with
non-zero displacement, velocity, or acceleration boundary conditions.

• When used in statics, GEnergies only works with echo, not results output.

8.1.30. Globals

Option Globals in the outputs section will ensure that any global data is output, even if
no other outputs are requested. Without this option (and with an empty output block), no
output file would be written. If no global data is defined for a given solution type, or if any
other outputs are requested, this option will have no effect. This option is also available for
history, frequency, and statistics output, and behaves similarly.

8.1.31. Block_Energies

Option block_energies in the echo or outputs will trigger block-wise energy sums for
the results or output Exodus file, respectively. The energy computations are done as
described in 8.1.29, where the displacement and velocity vectors have been restricted to the
element block. Kinetic and strain energies are computed. Global variables in the Exodus
file are “KineticEnergy_” and “StrainEnergy_” with the block name appended.

404

8.1.32. Mesh_Error

The mesh_error keyword causes mesh discretization error metrics to be computed. These
are computed as output quantities, but the overhead associated with the metrics is not
negligible. Mesh discretization quantities depend upon the solution type, and are not
available for all solutions. Output is typically available as element quantities (usually in
the mesherr field). For some mesh discretization errors, a global quantity is also output.
See [64] for a detailed description of the MeshErr calculation.

Output Description
ErrExplicitLambda Relative error in λ.
ErrExplicitFreq Frequency error estimate (Hz)

We note that for eigenvalue analysis, relative errors are reported for the eigenvalue when
using the mesh_error keyword. Thus, for a given eigenvalue λ, the reported error is

ErrExplicitLambda = λh−λ
λ

(8.8)

This is more convenient since the analyst does not have to divide by the eigenvalues to see
the percent error. The global variable ErrExplicitFreq provides an absolute estimate
(useful in plots for example).

The error (R) for a single element (K) is given as

RK(uh, θh) =∇·σ(uh) + θhρuh+
∑
f

1
2RF (8.9)

where θ is the eigenvalue, ρ is the density, and u is the displacement for mode h. RF is the
error on a single face

RF (uh) = JF (NF ·σ(uh)) (8.10)
where JF is the jump of the stress across the element boundary in the direction of the
element normal. Then, the global error estimate is written as:

MeshErr =
√√√√∑

e

h2
K

p2dK,min
||RK ||2 +

∑
f

hF
pdF,min

||Rf ||2 (8.11)

where h is the element length, p is the element order, and d is the maximum eigenvalue of
the element or face.

8.1.33. MFile

Option MFile instructs Sierra/SD to output many MFiles including Ksrr.m, Mssr.m in
the standard format 8.1. A partial index of the files written using this option is provided in
Table 8-129. For a model with a large numbers of elements, the MATLAB files are also
large in size. Binary MATLAB output is no longer supported.

405

Table 8-129. – Data Files Written Using the MFile Option.
Filename Description
Stiff.m Unreduced stiffness matrix including all

active dofs
Kssr.m Reduced stiffness matrix
Mass.m Unreduced mass matrix
Mssr.m Reduced mass matrix
LumpedMass.m unreduced lumped mass matrix
xxx_gid.m global IDs of the nodes
ASetmap_a.m Map to convert from G-set to A-set

The right-hand side is the equation number.
The left-hand index is 9*(node index)+coordinate

Dampr.m unreduced damping matrix (real components)
Dampi.m unreduced damping matrix (imaginary components)
xxx_accelN.m G-set acceleration output of step N
xxx_accel_aN.m A-set acceleration output of step N
xxx_afN.m G-set applied force output of step N
xxx_af_aN.m A-set applied force output of step N
xxx_dispNN.m G-set displacement output of step N
xxx_disp_aN.m A-set displacement output of step N
xxx_presN.m G-set nodal applied pressure of step N
xxx_pres_aN.m A-set nodal applied pressure of step N
xxx_velocN.m G-set velocity output of step N
xxx_veloc_aN.m A-set velocity output of step N
modal_amp.m modaltransient output of mode amplitude vs time

• Above the xxx refers to the input file name root.

• G-set output has dimension 9 (number of nodes).

• Sierra/SD adheres to the standard MATLAB conven-
tions 8.1.

• Some solution methods will not write all files. For exam-
ple, there are no mass matrices output in the solution of
statics. Generally, matrices are output in sparse symmet-
ric row format.

• The 1 to N node ordering of the input Exodus file defines
the ASetMap. Output file ordering may be different if
there is a node order map.

406

8.1.33.1. Example of Using MATLAB Outputs
As an example, consider obtaining the Y component stiffness matrix diagonal entry of
global node 77. The maps may be used as follows.

• Search through xxx_gid.m to find the global node number 77. Call index at which
the node is found is inode.

• Calculate the GSet index, which in this case is igset= (inode∗9) + 2. The 9 is for
9-DOFs per node. The 2 is for Y being the second DOF of the nine (X, Y, Z, RotX,
RotY, RotZ, Acoustic, Voltage, Temperature.)

• Lookup the Aset index, iaset= ASetmap(igset)

• If iaset is zero, then there is no defined stiffness matrix diagonal (could be an
undefined DOF, or a fixed DOF.) Otherwise, the stiffness diagonal is kaa(iaset, iaset).

8.1.34. Force

Option force will output the applied force vector to the output Exodus file, and the net
force applied to active degrees of freedom, and the net moment about the origin of forces
applied to active degrees of freedom. The net force is calculated from the right-hand side
given to the solver, so implementations that modify the right-hand side (cavitation) may
display non-physical net forces and moments. Net forces are available for static and direct
transient solution cases.

If rigid body filtering is requested via the FilterRbmLoad option (section 7.3.19), this
option will also output the filtered force to the output Exodus file, and the net force and
moment about the origin. The naming convention for both nodal and net (global) values
are force_inertia_relief for forces, and moment_inertia_relief for moments.

8.1.35. Constraint force

Option constraint_force will output the forces required to tie blocks together due to
multipoint constraints, RBE3s, Rbars, or rigid elements. Additionally, it will output the
net constraint force on the active degrees of freedom, and the net moment about the origin
of constraint forces on the active degrees of freedom. This output is currently only active
for the static and transient solution cases and for the GDSW solver.

8.1.36. Reaction Force

Option reaction_force will output the Dirichlet boundary reaction force vector to the
output Exodus file. Additionally, it will output the net reaction force on the active
degrees of freedom, and the net moment about the origin of reaction forces on the active
degrees of freedom. This output is currently only active for the static and transient
solution cases and for the GDSW solver.

407

8.1.37. Right-hand side

This output is useful primarily for verification and debugging purposes. Option RHS selects
the right-hand side vector for the analysis type. For statics and dynamics, the RHS vector is
the applied forces, pressures, inertial forces, or any pseudo forces introduced in preload (say
by TSR).

8.1.38. EForce

Option eforce will output the element forces for line elements (such as beams and springs)
to the output Exodus file. Each two node, one-dimensional element will have 6 force
entries for each node, for a total of 12 element forces per element, and an additional 3
variables describing the difference in displacement across the element.

The element force is not a stress or a strain, and should not be used as such. If you want
beam stresses, you may want to mesh that portion of the structure either as a shell or a
solid. Only limited stress output is available for beams. EForce is used primarily to help
understand the behavior of nonlinear line elements such as the Joint2g element (see Section
6.21). The output is the direct output of our internal force routine (which is a nonlinear
routine). It can be confusing to output these nonlinear forces in a linear analysis. 6

Eforce variable names are different for each solution case. When requested in typical
analyses, such as statics, transient, or eigen, eforce produces the variables in Table
8-130. For FRF solutions, “Imag” is prepended to the existing names 8-131. For
modalranvib, only translational forces are output, and are different between outputs and
frequency files. In an outputs result file, you will see the RMS of the force in the
translation directions 8-132. In frequency, the Spectral Densities of the element force are
represented by a Hermitian tensor at each frequency 8-133.

6Confusion arises because of the transformation to the element coordinate frame. For finite length elements,
we perform a transformation of the element coordinate frame based on the displacements. After the
coordinate frame is transformed, we express the element force in the new coordinate frame. This is done
for both linear and nonlinear analyses. The resulting element force is no longer linear in displacement.
Zero length elements do not have a rotated coordinate frame by default. Forces for zero length elements
are linear in the displacement.

408

Variable Names
eforce1_x
eforce1_y
eforce1_z

emoment1_x
emoment1_y
emoment1_z
eforce2_x
eforce2_y
eforce2_z

emoment2_x
emoment2_y
emoment2_z

e_dx
e_dy
e_dz

Table 8-130. – Typical Output.

Real Names Imaginary Names
eforce1_x Imageforce1_x
eforce1_y Imageforce1_y
eforce1_z Imageforce1_z

emoment1_x Imagemoment1_x
emoment1_y Imagemoment1_y
emoment1_z Imagemoment1_z
eforce2_x Imageforce2_x
eforce2_y Imageforce2_y
eforce2_z Imageforce2_z

emoment2_x Imagemoment2_x
emoment2_y Imagemoment2_y
emoment2_z Imagemoment2_z

e_dx Image_dx
e_dy Image_dy
e_dz Image_dz

Table 8-131. – FRF Output.

Real Names Imaginary Names
eforceRMS_x ImageforceRMS_x
eforceRMS_y ImageforceRMS_y
eforceRMS_z ImageforceRMS_z

Table 8-132. – ModalRanVib Exodus Output.

409

Real Names Imaginary Names
eforce_xx Imageforce_xx
eforce_yy Imageforce_yy
eforce_zz Imageforce_zz
eforce_xy Imageforce_xy
eforce_yz Imageforce_yz
eforce_xz Imageforce_xz

Table 8-133. – ModalRanVib Frequency Output.

8.1.39. Line_Weld

Option Line_Weld outputs line-weld-specific outputs as described in Section 6.22). The
outputs include whether a given beam is in an active weld, and the force per unit length
produced by the weld

NOTE: The force returned is in the element (not global) coor-
dinate frame.

8.1.40. Relative_Disp

Option relative_disp in the outputs, history , and/or frequency section(s) will
output the relative displacement between the two nodes of 1-D elements in the model.
That is, it will output the difference in displacements across the 1-D element. Currently,
relative_disp is only supported for the Joint2G element type, and is not supported for
FRF solutions. Relative rotations are not available. For solutions other than
modalranvib, including FRF, this data is also accessible through eforce.

relative_disp is output in the element-local coordinate system if a coordinate system has
been defined for the Joint2G block, and in the global coordinate system otherwise. This is
consistent with eforce outputs, but differs from displacement outputs. Using the
coordinate keyword in the outputs , history , or frequency will not affect this
output.

relative_disp is particularly useful for the modalranvib solution case, where
Sierra/SD does not typically calculate or output enough information to post-process the
difference in displacement between two points. The names of relative_disp outputs also
change in modalranvib results. See tables 8-134, 8-135, and 8-136.

relative_disp outputs are available in PSD form if requested in the frequency section
during modalranvib (Table 8-135). Note that the diagonal relative_disp terms are
output for both real and imaginary components. Hermitian symmetry is assumed in the
calculation of relative_disp outputs, and incorrect results will be reported if this
assumption is broken. Neither the input load, nor the relative_disp output should have
non-zero imaginary terms along the diagonal. That is, ImagRelDispGxx,

410

Variable Names
RelDispX
RelDispY
RelDispZ

Table 8-134. – Typical Output.

Real Names Imaginary Names
RelDispGxx ImagRelDispGxx
RelDispGyy ImagRelDispGyy
RelDispGzz ImagRelDispGzz
RelDispGxy ImagRelDispGxy
RelDispGyz ImagRelDispGyz
RelDispGxz ImagRelDispGxz

Table 8-135. – ModalRanVib Frequency Output.

ImagRelDispGyy, and ImagRelDispGzz should all be zero. The warning message
“Correlation Matrix is negative” indicates you may have this problem.

Real Names Imaginary Names
RelDispRMSX ImagRelDispRMSX
RelDispRMSY ImagRelDispRMSY
RelDispRMSZ ImagRelDispRMSZ

Table 8-136. – ModalRanVib Exodus Output.

relative_disp outputs are available in RMS form if requested in the outputs section
during modalranvib (Table 8-136). Only diagonal terms are reported. The imaginary
diagonal terms are set to 0.

8.1.41. Residuals

For most solution types, a linear solver is used to compute systems of the form Ax= b. For
direct serial solvers, these systems are typically solved to numerical precision. However,
with iterative solvers the solution is only approximate. Sometimes it is advantageous to
evaluate the performance of the solver. For example, regions with large residuals may be
candidate areas for mesh refinement, or may point to other mesh problems.

Eigen. For eigenvalues, the residual is (K−λiM)φ. The vector is not normalized by the
norm of φ, or any other quantity. A nodal residual work is also output. This is the
product φT (K−λiM)φ summed to the nodes, i.e., on a given node we sum the
contributing degrees of freedom. Again, the value is not normalized. With mass
normalized eigenvectors (which do not have units of length), the units of the residual
work are not energy, and the term may well be negative. The residual is output for
each mode.

411

Transient Dynamics. For transient analysis the residual reported is Au− b, where A is the
dynamics stiffness matrix defined in subsection Linear transient analysis section
Solution Procedures of the Theory Manual. A displacement-based Newmark-Beta
integrator has dynamic stiffness,

K+ 2
∆tC+ 4

∆tM.

The residual is output at each time step.

In addition to the residual vector, the norm of the residual is output as a global variable.

8.1.42. TIndex

It is occasionally useful to examine the residual after each iteration or solve. In the cases of
nonlinear transient or nonlinear statics analysis, there may be many solves per output.
Because of limitations in the output database format, it is difficult (or impossible) to
intersperse the residuals from each solve with the usual solution output. However, it is
possible to select between the standard time step and an “iteration time step”. Note that
the Exodus database writes output for each “time step”. It uses the step number as an
index to the data, and only one such index is supported. When we substitute the iteration
number for the time step we can write the data properly, but once iteration has completed,
we may not write data using the other index (time step, or mode number). Should that
occur, we would have residuals from one iteration sharing the same time axis index with
transient data. The parameters for the option are listed in Table 8-137.

Keyword Application
standard use time step or mode number as index
iteration use the iteration count as index

Table 8-137. – TIndex parameters.

OUTPUT
disp
residuals
Tindex=iteration // output on each iteration

END

Input 8.1. TIndex example

TIndex makes sense only in solutions that require multiple iterations per solve, such as
nonlinear solutions. In other solutions, it is ignored, and output is provided at the
standard time step.

412

NOTE: TIndex is a debugging function. As such, we do minimal
checks. In some solutions, it might be possible to output data
using both steps.

8.1.43. EOrient

Option EOrient in the outputs will output the element orientation vectors for all
elements. The element orientation is a design quantity that normally does not change
significantly through the course of an analysis. This output is provided to help in model
construction and debugging.

The orientation vectors are output as nine variables that collectively make up the three
vectors required for element orientation. The output variables and the associated meanings
for various elements are shown in tables 8-138 and 8-139 respectively.

Table 8-138. – Element Orientation Outputs.
Name Description
EOrient1_X
EOrient1_Y first orientation vector
EOrient1_Z
EOrient2_X
EOrient2_Y second orientation vector
EOrient2_Z
EOrient3_X
EOrient3_Y third orientation vector
EOrient3_Z

Table 8-139. – Element Orientation Interpretation.
Element EOrient1 EOrient2 EOrient3
Beam2 axial first bending (I1) 2nd bending (I2)
Shells Element X Element Y Normal
Solids Element X Element Y Element Z
Hexshell Element X Element Y thickness
ConMass null null null

8.1.44. Pressure

Option pressure in the outputs selects applied pressure output to the Exodus file as
both a sideset variable and a new nodeset variable. The addition of nodeset pressure
output enables restarts using the output pressure as an input load. For most applications
this also provides a useful tool for checking input loads.

413

8.1.45. NPressure

Option npressure in the outputs will output the nodal pressure to the output Exodus
file as a nodal variable. This output is only available for solutions that introduce nodal
pressure (currently only the random pressure loading).

8.1.46. APressure

Option APressure in the outputs will output the acoustic pressure to the output
Exodus file as a nodal variable. For purely acoustic elements, this will result in one degree
of freedom per node. At the wetted interface, the nodes of node-face interactions inherit
the degrees of freedom from the face, this will result in four degrees of freedom per node in
the output Exodus file.

8.1.47. acousticIncident

Option acousticIncident outputs the incident pressure from scattering loads. This
pressure is for visualization purposes only.

8.1.48. acousticHydrostatic

Option acousticHydrostatic outputs the hydrostatic pressure defined for acoustic
materials. This hydrostatic pressure is defined the commands hydrostatic_gravity and
free_surface_point in the block input and primarily affects cavitation computations.

8.1.49. APartVel

Option APartVel in the outputs will output the acoustic particle velocity to the output
Exodus file as an element variable. This is the velocity of the fluid particles. It is
computed in Sierra/SD as the gradient of the velocity potential. For purely acoustic
elements, this will result in three degrees of freedom per element.

414

8.1.50. Constraint_Info

Linear system solvers are sensitive to redundant or inconsistent constraints. Keyword
constraint_info selects constraint information on the nodes. The information is useful in
preparing models that are less sensitive to redundant constraints. Redundancy can be
generated in any of the constraint types or intersections between types.

Constraint information has several fields.

MPC_Status Indicates if a given node is involved in any MPC equation. A value of ’1’
indicates the node is used in at least one equation, ’0’ otherwise.

MPC_Touched Indicates how many times a given node shows in MPC equations.

Node_Face_MPC_Count For only node-face contact constraints, this indicates how
many times that a node is used as the node of a node on face constraint. A value
greater than one can be problematic as a given node can only be correctly tied to a
single face without introducing over-constraint.

Node_Face_MPC_Redundancy For only node-face contact constraints this highlights
nodes that may be over-constrained. Pay attention to values greater than one. The
Node_Face_MPC_Redundancy is typically one less than Node_Face_MPC_Count
unless there are more than 3 independent constraints for a specific sideset pair, as
may occur if a sideset pair is used in both a tied constraint and a slip contact, or
Tied Joint.

Node_Face_MPC_Gap indicates the distance the node of a node-face constraint must
be moved to be placed on the face. Many problems with constraints stem from
surfaces that do not properly match up geometrically.

Node_Face_MPC_Both_Node_and_Face For node-face constraints only this indicates
if a particular node acts as a node in one node-face constraint and also is attached to
the face of separate node-face constraint. A ’1’ means such situation occurs. In some
cases such nodes may be part of a problematic cyclic constraint. However, in other
cases this situation may be expected and cause no problems.

MPC_Origin Indicates what capability created the MPC. For example sliding contact vs.
tied contact. The index number output matches a table in the rslt log file. Currently,
this output is only available from node-face contact constraints.

8.1.51. Statistics

For transient dynamics solutions only, summary statistical information may gathered and
output for the time history of variables listed in Table 8-140. We gather information about
the mean, the min/max, and the standard deviation. Data is gathered at each time step,
independent of the frequency of output (e.g. nskip is ignored).

415

Because this is summary data, it is not convenient to append this data to the file used for
output of the time history. Another file is generated with a .stat extension to store that
data.

Statistical data requires two keywords for output. Both “statistics” and the keyword
associated with that output quantity must be selected. For example, to output statistics of
the force, the following output section is required.

Outputs
statistics
force

end

As with output in general (section 8.1.2), users can define a custom statistical output file
name via the statistics block:

Statistics
database name = <string>

end

Keyword Section Comment
Displacement 8.1.13

Velocity 8.1.14
Acceleration 8.1.15

Force 8.1.34 applied force
RHS 8.1.37 Right-Hand Side vector at each load.

vonMises 8.1.18 von Mises stress, supported for echo output only.

Table 8-140. – Supported Statistical Data types for Transient Dynamics. Selection of these
quantities along with “statistics” results in an addition Exodus file containing mean, min/max
and standard deviation data.

8.1.52. KDiag

Option kdiag in the outputs will output the maximum and minimum values of the
diagonal of the stiffness matrix as nodal variables KDiagMax and KDiagMin. These are
the max and min of the 7 variables associated with the 3 translational, 3 rotational and 1
acoustic degree of freedom on each node. These values are primarily useful for diagnostics
purposes, where they may help identify stiff regions of a model. All 7 terms may be seen by
outputting KDiag in the echo section.

Figure 8-60 illustrates the use of this option. Note how the center sections of the model are
highlighted by their stiffness terms. This tool is especially important for analyzing some
collections of beams. Beam stiffness is proportional to 1/L3. A common mistake is to

416

generate stiff beams, which can ruin the numerical solution. See Section 8.1.53 for a related
diagnostic on the dynamics matrix. 1

Figure 8-60. – Example KDiag output.

1The stiffness diagonal and dynamic matrix diagonal depend to some extent on the linear solver used.
Domain decomposition solvers generally use Lagrange multipliers to eliminate constraints, while some
sparse solvers remove constraints through reductions of rows and columns of the matrices. Because the
matrices to be solved are different, the diagonals and conditioning of the matrices are also different.

417

8.1.53. ADiag

Option ADiag in the outputs will output the maximum and minimum values of the
diagonal of the dynamics matrix as nodal variables ADiagMax and ADiagMin. Refer to the
KDiag section, (8.1.52), for format information.

The “dynamic matrix” is the matrix which is solved by the linear solver. The “ADiag”
diagnostic can help identify regions of the model that may contribute to poor matrix
conditioning. Summary of a few of the dynamics matrix terms are listed in Table 8-141.
Refer to the theory manual for details of the matrix to be solved. Dynamics matrix output
is available for most solvers (including GDSW), and for some solution methods.

Solution Matrix Comment
eigen K−σM real eigenvalue problem
transient K+ 4

∆T 2M + 2
∆TC standard Newmark-Beta

Statics N/A dynamics matrix is stiffness matrix
qevp N/A unimplemented

Table 8-141. – Selected Dynamic Matrix Definitions.

8.1.54. ddamout

Table 8-142 lists the nodal and element variables that are output when the ddamout
keyword is selected in the OUTPUTS or HISTORY sections. Element variables will be
skipped when writing to the history file.

In Ddam analysis some of this data is also written to text files.

NRL sums of variables are calculated across modes with the equation:

Ria+

√√√√√ N∑
b=1

R2
ib−R2

ia

Where:

RRRia is the maximum absolute value at location i for all modes.

RRRib is the value at location i and mode b.

NNN is the number of modes.

Finally, we note a couple of additional details for output of DDAM data.

418

Table 8-142. – Variables that are output from DDAM analysis.
Option data type Description
DDAM_MDISP nodal modal displacements
DDAM_MVEL nodal modal velocities
DDAM_MACC nodal modal accelerations
DDAM_MFOR nodal modal forces
DDAM_NRL_SDISP nodal nrl-summed displacements
DDAM_NRL_SVEL nodal nrl-summed velocities
DDAM_NRL_SACC nodal nrl-summed accelerations
DDAM_NRL_SFOR nodal nrl-summed forces
DDAM_VStress element modal volumetric stresses (tensor values)

see sections 8.1.18, 8.7 and 8.7.2
DDAM_NRL_SUM_VStress* element nrl-summed volumetric stresses
DDAM_SStress* element modal surface stresses (tensor values)

at each of 3 shell layers
see sections 8.1.18, 8.7 and 8.7.3

DDAM_NRL_SUM_SStress* element nrl-summed surface stresses
DDAM_axialStress element modal axial stress (1D only)

see sections 8.1.18, 8.7 and 8.7.4
DDAM_NRL_SUM_axialStress element nrl-summed axial stress (1D only)
DDAM_bendingStress* element modal bending stress (1D only)

at each stress recovery point
see sections 8.1.18, 8.7 and 8.7.4

DDAM_NRL_SUM_bendingStress* element nrl-summed bending stress
DDAM_shear Stress* element modal shear stress (1D only)

2 shear directions at each stress recovery point
see sections 8.1.18, 8.7 and 8.7.4

DDAM_NRL_SUM_shear Stress* element nrl-summed shear stress
DDAM_MVMSTR element modal von Mises stress

see section 8.1.20
DDAM_NRL_SVMSTR element nrl-summed von Mises stress
DDAM_HYDROSTATIC element modal hydrostatic stress (3D only)
DDAM_NRL_SUM_HYDROSTATIC element nrl-summed hydrostatic stress
DDAM_MaxShear element modal max shear stress (3D only)
DDAM_NRL_SUM_DDAM_MaxShear element nrl-summed max shear stress

419

• In parallel runs, the text file output will not include nodal variables, since that data
would not be usable in that form. Instead, that data could be written to the Exodus
file with the ddamout keyword.

• History output of DDAM data will only write the nodal variables, not the element
variables. Element variable history output for DDAM analysis is currently not in place.

8.1.55. Temperature

The Temperature keyword is a single keyword that can be used to trigger Exodus
output of element temperature at the centroid. Element temperature can either be read in
as input temperature or calculated from energy deposition. The element centroid
temperature can originate from the reference or block temperature, and the centroid, nodal
or Gauss point Exodus data.

Voltage and Charge The voltage keyword is a single keyword that can be used to
trigger Exodus output of the nodal voltages for electro-mechanical coupled models. The
nodal_charge keyword is a single keyword that can be used to trigger Exodus output of
the applied nodal charges.

Volume Keyword Volume selects Exodus output of element volume in the undeformed
state. Volume is the integral of shape functions for solid elements. For shell elements the
volume is the area times the thickness of the elements. For bar and beam elements the
volume is length times the cross-sectional area of the element.

8.2. User Output

Sierra/SD enables several output processing operations to be computed during the run
via the user output blocks. Use of these outputs can simplify post processing and reduce
the need to output large quantities of data or time steps in order to generate quantities of
interest.

The user output command syntax computes new output fields. These output fields can
then be output to results or history files.

8.2.1. Element Variable Spatial Statistics

User Output
block <list>(block names/ids)

compute global <string>Name1 as average|avg
↪→ of element stress|strain|vonMises (weighted by volume)

compute global <string>Name2 as max|min|maxabs|minabs

420

↪→ of element stress|strain|vonMises
end

These user output commands calculate the spatial statistics of an element variable within
a user specified list of blocks as a global variable. Multiple blocks can be selected in the
same way as subdomain selection in the echo block (Section 8.8.4). The names such as
Name1 and Name2 are given in the input deck. These names can then be included outputs
or history block to turn on that user output in the corresponding output file.

The optional ’weighted by volume’ command performs a volumetric average over the
elements. Without this command an equal weight per element average is used. The max
and min commands output the maximum or minimum value for each stress/strain
component over all elements in the set. The maxabs and minabs output the maximum or
minimum of the absolute value of each stress/strain component over all element sin the
set.

8.2.1.1. Element Averaging Example
User Output

block = block_5
compute global strain_gauge as average of element strain weighted by volume

end

History
strain_gauge

end

If block_5 contained solid elements then the outputs would be a set of global variables
stress_gaugeVStressX, stress_gaugeVStressXY, stress_gaugeVStressXZ, Where
each value is the volumetric average of the strain over all elements in block_5.

8.2.2. Nodal Variable Spatial Statistics

User Output
block <list>(block names/ids)
surface <list>(sideset names/ids)
nodeset <list>(nodeset names/ids)
compute global <string>Name as max|min|maxabs|minabs|avg|average
↪→ of nodal <string>Variable

end

This user output section calculates the spatial statistics of a nodal variable or field within
a user specified region for output file or history file as a global variable. Multiple regions
are selected in the same way as subdomain selection in the echo block (Section 8.8.4).

421

Each user output can then be included by name in the outputs or history block, as with
element outputs (section 8.2.1).

The Variable used can typically be one of three things:

• One of the output requests typically available from output or history files.

• One of the output fields written to the output or history fields.

• A previously computed user output

This is best shown via example.

8.2.2.1. Nodal Statistics Output of a Request String Example
User Output

nodeset = 5
compute global d1 as max of nodal disp

End

Outputs
d1

End

In this case disp is one of the variables that can be normally written by output or history
results. The outputs written to the exodus results will be three global variables d1DispX,
d1DispY, and d1DispZ as the maximum displacement values seen at a node in nodeset 5.

8.2.2.2. Nodal Statistics Output of a Field String Example
User Output

nodeset = 6
compute global d2 as avg of nodal AccelY

End

Outputs
d2
accel

End

In this case AccelY is one of the fields written by the accel output request. The outputs
written to the exodus results will be a single global variable d2 which is average Y
acceleration of all nodes in nodeset 6.

8.2.2.3. Nodal Statistics Output of a Previously Computed Output Example

422

User Output
nodeset = 7
compute nodal coord_r as function rCoord
compute global coord_r_min as min of nodal coord_r

End
Outputs

coord_r_min
End

In this case coord_r is computed on each node of nodeset 7 by a function defined user
output 8.2.5 and then the global coord_r_min is computed as the minimum coord_r on
any node. The output of this combination of operation is the single global variable
coord_r_min.

8.2.3. The Closest Distance

User Output
block <list>("A" block names/ids)
surface <list>("A" sideset names/ids)
nodeset <list>("A" nodeset names/ids)

compute global <string>name_1 as closest distance
↪→ to block <list>("B" block names/ids)
↪→ (search node_face|node_node|mixed)

compute global <string>name_2 as closest distance
↪→ to surface <list>("B" sideset names/ids)
↪→ (search node_face|node_node|mixed)

compute global <string>name_3 as closest distance
↪→ to nodeset <list>("B" nodeset names/ids)

compute nodal <string>name_4 as closest distance
↪→ to surface <list>("B" sideset names/ids)

compute nodal <string>name_5 as closest distance
↪→ to block <list>(B block names/ids)

end

The closest distance output computes the closest distance between two different pieces of
the mesh.

The compute global option requests, as a single global variable, the closest distance
between the “A” set blocks, sidesets, nodesets and the “B” set blocks, sidesets, or nodesets.

423

This is the minimum separation distance between these two sets anywhere in the model in
the current displaced shape as computed by closest point projection.

An optional search command applies to the block/sideset from the compute global line. For
mixed the default is node_face. While the node-face search calculates the distance from
the nodes in set “A” to the closest face in set “B”, the node-node search option computes
the closest distance from the nodes in set “A” to the nodes in set “B”. If the “B” set
contains only nodesets, then only the node_node search can be used, and a search option
there will be ignored (with a warning).
The closest distance nodal variables is currently BETA release.
Enable with the “- -beta” command-line option.

The compute nodal option computes the closest distance between each node in the “A”
set to the faces in the “B” set. This output is a full field result for the closest distance
calculation.

8.2.3.1. Modal Random Vibration Closest Distance Output
The closest nodal outputs have special meaning for the modalranvib solution case
(section 4.17), where Sierra/SD does not typically calculate or output enough information
to post-process the difference in displacement between two points. The names (and
meanings) of nodal closest distance outputs also change in modalranvib results.

The closest distance nodal outputs are available in PSD form if requested in the
frequency section during modalranvib (table 8-143).

Real Names Imaginary Names Purpose
<name>_RelDispGxx <name>_ImagRelDispGxx Power spectral density
<name>_RelDispGxy <name>_ImagRelDispGxy of relative displacements
<name>_RelDispGxz <name>_ImagRelDispGxz
<name>_RelDispGyx <name>_ImagRelDispGyx
<name>_RelDispGyy <name>_ImagRelDispGyy
<name>_RelDispGyz <name>_ImagRelDispGyz
<name>_RelDispGzx <name>_ImagRelDispGzx
<name>_RelDispGzy <name>_ImagRelDispGzy
<name>_RelDispGzz <name>_ImagRelDispGzz

<name> Distance to the closest point

Table 8-143. – ModalRanVib Frequency Closest Distance Nodal Output.
<name> is the name of the user output request.

Additionally, closest distance nodal outputs are available in RMS form if requested in the
outputs section during modalranvib (table 8-144).

8.2.3.2. Closest Global Distance

424

Real Names Imaginary Names Purpose
<name>_RelDispRMSxx <name>_ImagRelDispRMSxx RMS of relative
<name>_RelDispRMSxy <name>_ImagRelDispRMSxy displacement
<name>_RelDispRMSxz <name>_ImagRelDispRMSxz
<name>_RelDispRMSyx <name>_ImagRelDispRMSyx
<name>_RelDispRMSyy <name>_ImagRelDispRMSyy
<name>_RelDispRMSyz <name>_ImagRelDispRMSyz
<name>_RelDispRMSzx <name>_ImagRelDispRMSzx
<name>_RelDispRMSzy <name>_ImagRelDispRMSzy
<name>_RelDispRMSzz <name>_ImagRelDispRMSzz

<name> Distance to the closest point

Table 8-144. – ModalRanVib Exodus Closest Distance Nodal Output.
<name> is the name of the user output request.

User Output
block block_5
compute global dist57 as closest distance to block block_7
compute global dist59 as closest distance to block block_9

End

History
dist57
dist59

End

This will output a two global variables dist57 and dist59 which are the closest distance
between blocks 5 and 7 and blocks 5 and 9 respectively in the current deformed
configuration. This form of the command will work with the statics, transient,
modaltransient, and nltransient solution cases.

8.2.3.3. Closest Distance Field
User Output

block block_11
compute nodal dist_to_surf_6 as closest distance to surface 6

End

History
dist_to_surf_6

End

This will output nodal variable dist_to_surf_6 which at each node of block_11 is the
distance from that node to the closest part of block_6. For the statics, transient, and
modaltransient solution cases this will be a single value per node. For the modalranvib

425

solution case this will be a set of variables describing the statistical properties of that
distance calculation.

8.2.4. Temporal Variable Statistics

These user output variables support the same use case as the Statistics file, with more
granular control over variable selection, and broader support for variables to be derived.
These user output variables are intended as a replacement for the Statistics file.

Statistical user output values do not match values in the Statistics file. The cause of
this is the inclusion of the model’s initial state in user output calculations, and its
exclusion from Statistics file calculations. The OutputInitialTime parameter has no
effect on either calculation.

User Output
compute element <string>name1 as average|standard deviation|rms|min|max
↪→ over time of element <string>var1

compute nodal <string>name2 as average|standard deviation|rms|min|max
↪→ over time of nodal <string>var2

end

This user output block computes two new derived variables name1 and name2 by applying
an operator over time to the built-in variables var1 and var2. These derived outputs
require time histories, and are only tested for transient, modaltransient, and statics
solution cases.

Supported operators include minimum(min), maximum(max), mean estimate(average), the
Root-Mean-Square (rms), and the standard deviation. Note that the standard
deviation operator uses Bessel’s correction in its calculations. That is, we define the
variance as:

1
N −1

N∑
i=1

(xi− x̄)2

not
1
N

N∑
i=1

(xi− x̄)2

.

The source variables var1 and var2 must be built-in variable request strings; “chaining”
derived variables together is not currently supported. Additionally, these variable request
strings must match variable requests in other contexts; Stress and Displacement are
valid, but StressXX and DispX are not.

Most built-in variable requests represent several variable fields in the results file. Therefore,
derived variable fields are defined by prepending the user string name1 to the built-in field

426

names StressXX, StressYY, StressZZ, . . . The result in this case would be
name1StressXX, name1StressYY, name1StressZZ, . . .

Every built-in element request and most built-in nodal requests are available for use in
derived outputs. Some very specialized nodal requests are not supported for derived
outputs, due to the unusual nature of their calculations. For example, variables derived
from AcousticLighthill will always report 0. This is a known deficiency which can be
addressed as needed.

8.2.4.1. Temporal Statics Example
User Output

compute nodal RMSAcc as rms over time of nodal accel
End
Output

AvgAcc
End

This will write three nodal variables RMSAccAccelX, RMSAccAccelY, RMSAccAccelZ which
is the root-mean-squared acceleration components seen at each node over time.

8.2.5. Analytic Function Output

Analytic Function Output is currently BETA release.
Enable with the “- -beta” command-line option.

Nodal variables can also be defined based on the output of other analytic function as
follows:

User Output
compute nodal <string>name as function <function>

End

where <function> refers to the function id of a valid analytic function (section 3.8.9). The
analytic function will compute a single value at each node.

Currently, only transient, modaltransient, and statics solution cases support analytic
function nodal outputs.

8.2.5.1. Total Pressure Example
FUNCTION totalPressure

type = analytic
expression variable scatteringPressure = nodal apressure
expression variable incidentPressure = nodal acousticIncident
evaluate expression = ‘‘scatteringPressure + incidentPressure’’

427

END
FUNCTION cavitationFlag

type = analytic
expression variable totalPressure = nodal totalPressure
evaluate expression = ‘‘totalPressure < 0 ? 1 : 0’’

END
User Output

compute nodal totPressure as function totalPressure
compute nodal cavFlag as function cavitationFlag

End
Output

totPressure
cavFlag

end

For an acoustic scattering transient analysis this example computes a nodal field
totPressure which is the summation of two other fields computed by Sierra/SD, the
scattering and acoustic pressure. Further if that total pressure is below zero it sets a
cavitation flag to “1” on the node, if the total pressure is positive then the cavitation flag
would be “0”.

8.2.5.2. Displacement Magnitude Example
Function mag

type = analytic
expression variable disp = disp
evaluate expression = ‘‘

dx = disp[0];
dy = disp[1];
dz = disp[2];
sqrt(dx^2 + dy^2 + dz^2)

‘‘
End
User Output

nodeset 3
compute nodal dispMag as function mag

End
Output

dispMag
End

This output will compute at each node of nodeset 3 the magnitude of displacement and
output it as a nodal value.

428

8.3. Output of Internal Variables

Output of Internal Variables is currently BETA release.
Enable with the “- -beta” command-line option.

A limited capability exists to write internal nodal variables to the exodus output file.

The syntax is given below:

OUTPUTS
node|nodal variables = <string>internal_name (as <string>output_name)
...

END

where internal_name is the name of the nodal field used internally (e.g., dispX for the
X-component of displacement), and output_name is an (optional) user-defined alias to use
when writing to file.

Alternatively, vector-valued variables may be referred to by the root name and a
component. For example, using internal_name ..= disp(X) would select the
X-component of displacement.

Finally, vector-valued variables like displacement can also use a shorthand notation for
defining all components at once. This is accomplished simply by replacing internal_name
with the root name. For example, nodal variables = disp as d would output all
displacement fields (stored internally as dispX, dispY, . . .) as dX, dY,

8.4. History

All the results from the “OUTPUT” section can be output to a limited portion of the
model using a history file. Only those outputs described in Table 8-125 are supported. If
the output is also specified in the OUTPUT section, there is little need to write the data in
the history file. The following output section options are ignored in the history section
because all history file output will be in the Exodus format.

• MFile

• Kaa, Maa, Faa

• vrms

In addition to the outputs selection options, the history file section contains information
about the regions of output. The default is NO output selection. Selection may be for node
sets, side sets, a node list file (see Section 7.1.6), or element blocks. Virtual blocks can be
included in this section. For example, one could output the element force in a virtual
Joint2g element. If side sets are selected, the side set selection is for the nodes associated
with that side set, not for the elements themselves. All nodal variables selected in the

429

history file will be output for all selected nodes. Selecting an element block automatically
selects the associated nodes in that block. The format for the selection of multiple regions
uses a series of MATLAB concatenated ranges, as with subdomain selection in the echo
block (Section 8.8.4). Additionally, the keyword all can be used to select all nodesets,
sidesets, or blocks for output. For example,

History
nodeset tail,1:10,17
sideset all
nodeset ’8,15’ coordinate 4
block ’5,6, nose’
stress
disp
nskip 10
element centroid stress nearest

location 0 1 2 as stress_gauge
element strain nearest location 1 2 1 as strain_gauge
element stress at element 1 as element_1_stress_gauge
element strain nearest center of

sideset wing as sideset_1_strain_gauge
node acceleration at node 7 as node_7_accel_gauge
node displacement nearest location 2 2 10 as disp_gauge

end

Any number of nodeset, block, and/or sideset selections can be specified in the history
section. Nodeset, sideset, and block specifications may be followed by an optional
coordinate entry. If a coordinate is specified (see section 3.7), all nodal results for the
nodes in the region are transformed to the specified coordinate system before output to the
file. If a particular node is identified in more than one specification, a warning will be
issued to the log .rslt file, indicating which coordinate system will be used. Note that the
coordinate keyword for history section output will only work with nodesets, sidesets, and
blocks: it is not supported for node list files.

The coordinate name of nodes in the history file may be printed out in the echo file by
specifying nodes in the echo section of the input. The coordinate ID will also be written
to the history file (as a nodal variable CID) provided any nonzero coordinate frames have
been specified. Note that if the coordinate name is not convertible to an integer id (i.e., if
it is a string), the CID output will be -1.

Note that for output specifications, the corresponding nodeset, block, and sideset
ids/names should be specified as shown in the above example, with either a list of
ids/names, or the keyword “all”. The rules for specifying these lists are the same as for
integer lists, and are detailed in Section 3.1.

In transient dynamics solutions, user control of output step interval “nskip” and output
buffer “flush” operations are provided to increase efficiency of output. See Section 4.29 for

430

examples. The history file respects the nskip and flush parameters set in the solution
block, but additional user control is provided for history files by inserting the nskip and
flush parameters in the history block. In that case, history files for all multicase solutions
will have output and buffer flushing at the intervals specified in the history section, and the
entries in the solution section will be ignored for history files.

Unlike subdomains, node set and side set IDs need not be contiguous in the Exodus file.
If the selection criteria is a range, it may identify nonexistent sets. These will be silently
ignored. In example 8.4 above in which nodesets tail, 1:10 and 17 are selected, the
Exodus mesh must have nodeset number 10. Nodeset, sideset, and block names/IDs in
the history file must be consistent with the corresponding Exodus input file.

As with output in general (section 8.1.2), users can define a custom history output file
name via the database name keyword. Additionally, Exodus properties can be defined
as shown in Section 8.1.3.

Only one history file will be written per analysis. The name of the history file is derived
from the name of the Exodus output file, except that the extension is “.h”.

While the history file provides a convenient means for transforming coordinates, its
applicability may be somewhat limited when output in many coordinate frames is desired.
In particular, only a single history file is written in each analysis, and only one coordinate
frame may be output per node. The history file will display variables as Cartesian
regardless of coordinate choice. Table 3-23 shows the corresponding values for cylindrical
and spherical coordinates.

8.4.1. Global History Output Near a Location

The history data of a mesh entity near a location can be written to the output file as a
global variable using any of the following syntax:

NODE|ELEMENT (optional, for element)CENTROID
<string>variable_name
NEAREST LOCATION <real>global_x,
<real>global_y, <real>global_z
AS <string>history_variable_name

NODE|ELEMENT <string>variable_name
AT NODE|ELEMENT <int>global_id AS
<string>history_variable_name

431

ELEMENT <string>variable_name
NEAREST CENTROID OF SIDESET
<int(/string)>sideset_id(/sideset_name)
AS <string>history_variable_name

Outputs at multiple locations can be requested from a history block. Each output location
needs a unique history_variable_name. This capability is currently only supported for
outputting data at the closest location for 3D elements or the closest centroid for 2D and
3D elements (using the optional CENTROID flag). If the closest location to the centroid of a
specified sideset is requested, the data is obtained at the nearest location on a 3D element
surface that touches the sideset. If the data at a specified element is requested, the data is
obtained from that element centroid for 2D and 3D elements. Trying to specify a 1D
element is not supported. If a 1D element is specified directly, or if no elements can be
found that satisfy the search conditions, the log file (with ending rslt) will contain a
statement that no element was found.
Note: User-specified element, nodal, and sideset IDs should be base-1 to match the
Exodus convention.

All element output cases are currently only supported for stress, strain, and von Mises
stress output. Likewise, displacement, velocity, acceleration, and force outputs are the
currently supported nodal outputs. A similar capability and syntax is used in Sierra/SM.
A summary of the global history data output will be written to the log file in the following
format:

======================= GLOBAL HISTORY OUTPUT ===========================
Prefix Block Entity, GId(: Type) Variable Near At
------------ ----- ------------------- -------- ------- -------------
stress_gauge 1 element 1: Hex8b stress (0,1,2) (0.5,0.5,0.5)
strain_gauge 1 element 5: Hex8b strain (1,2,1) (1,2,1)
stress_gauge 1 element 1: Hex8b stress N/A (2.5,1.5,0.5)
strain_gauge 1 element 6: Hex8b strain (2,3,1) (2,2,1)
accel_gauge N/A node 7 accel N/A (1,1,0)
disp_gauge N/A node 38 disp (2,2,10) (2,2,1)
===

In the Exodus history file output, the global variable’s prefix or history_variable_name
will be prepended onto the element variables output name (see sections 8.1.18 and 8.1.16
for stress and strain variable names). For example, if you had two requested outputs near a
shell centroid and a solid, with prefixed names “shell_strain” and “solid_stress”
respectively, the global history output would produce the following global variables in the
history file:

shell_strainSStrainX1, shell_strainSStrainY1, shell_strainSStrainXY1,
shell_strainSStrainX2, shell_strainSStrainY2, shell_strainSStrainXY2,
shell_strainSStrainX3, shell_strainSStrainY3, shell_strainSStrainXY3,

432

solid_stressVStressX, solid_stressVStressY, solid_stressVStressZ,
solid_stressVStressXY, solid_stressVStressXZ, solid_stressVStressYZ

Variables requested for global history output will be output on every other element block
in the history block.

8.5. Frequency

The frequency section provides information for data output from the ModalFrf, directFRF,
shock, modalshock, and random vibration solution methods. One frequency file is written
per analysis. The name of the frequency file is derived from the name of the Exodus
output file, except that the extension is “.frq”. The section format follows that of the history
section. As in the case of the history section, data can be written to a sideset, nodeset,
node_list_file, or a block. In the case of output to a block, the block can be a virtual
block. Thus, one could output element force on a Joint2g element. Solution methods that
do not write frequency domain output silently ignore the Frequency section.

The frequency section also includes the definitions of the frequency values for calculation.
A frequency section (with some output selection region) must be selected for any solution
method requiring frequency output. To fail to do so is an error, since the solution would be
computed and no output provided.

As with output in general (section 8.1.2), users can define a custom frequency output file
name via the database name keyword. Additionally, Exodus properties can be defined
as shown in Section 8.1.3.

The frequency values may be specified using the methods specified in Table 8-145. The
methods are mutually exclusive, i.e., do not mix keywords from the “linear” method with
those of the “table” method. An example follows.

Table 8-145. – Frequency Value Specification Methods.

Method Keyword Description
freq_min minimum frequency (typically in Hz)

method=linear freq_max stop frequency
NF number of frequency intervals.

freq_step frequency increment (or use NF)
freq_min minimum frequency (typically in Hz)

method=log freq_max stop frequency
NF number of frequency intervals.

method=table table name of a 1D table (see Section 3.8.19)

433

FREQUENCY
nodeset ’1:10,17’
sideset ’3:88’
block 5,6,3
disp
acceleration
freq_min=10 // starting frequency in HZ
freq_step=10 // frequency increment
freq_max=2000 // stop freq. Outputting 201 freq points.

END

For the “linear” and “log” methods, the frequencies are obtained by the following
equation.

Fk =
 Fmin+k ·Fstep for method=linear

Fmin exp(kD) for method=log

Here D = 1/NF log (FmaxFmin
). If both freq_step and NF are specified, NF is used.

Output Region:

The controls in the frequency section also affect data written to the results (or echo) file.
In particular, the echo file contains data only for those nodes in the selection region of the
frequency section. Selection of a specific output (such as displacement or acceleration) is
independent. For example, you may echo only displacements, but write displacements and
accelerations to the Exodus frequency output file. The history section (8.4) has more
information on specification of the output region.

The Sierra translator exo2mat may be used to translate the output into MATLAB
format for further manipulation and plotting.

8.6. Linesample

The line sample (LineSample) section of the input file provides a means of evaluating and
outputting fields or internal variables at sampling points within a structure. These
sampling points are defined on a series of lines.

Section 4.30 discusses the primary application of line sample, verification of stress field
input to Sierra/SD from TSR. Line sample is used for energy deposition (see Two
Element Exponential Decay Variation Hex20 in the Verification manual43). Energy
deposition is interchangeable with supplying an applied temperature. Line sample is also
used for far-field processing in acoustics problems (see 7.1.10.1 or How To41), for example
with infinite elements.59

Keywords for the line sample input are listed in the table below. An example follows.

434

Keyword Arguments
samples per line integer
endpoint 6 real numbers
format string
nskip integer
database name string

samples per line The number of sample points on each line. All lines will have the same
number of samples.

endpoint The endpoints of the line. There should be 3 real numbers for the XYZ location
of the beginning of the line, followed by 3 real numbers at the end. There can be any
number of endpoint entries.

format The format of the output file. Two output formats are supported: Exodus and
MATLAB MFile. The default is MFile.

nskip Results output frequency; defaults to the value specified in the solution section; see
Section 4.29.0.4.

database name The name of the output file; defaults to linedata.m for MATLAB output
and linedata.exo for Exodus output.

There is no need to join this data for parallel runs. In those output files, a nodal variable
called Displacement will be created. The entries in this array correspond to 3
displacement variables, 3 rotation variables, acoustic pressure, voltage, and temperature.
For transient data, the time values are also output for each of these arrays.

LineSample
samples per line 5
endpoint 0. 0. 0. 1. 1. 1.
endpoint 0.0 0.5 0.5 1. 0.5 0.5
format exodus

END

8.7. Stresses and Strains

Stress and strain values at element centroids are available. Solid and beam element stress
is evaluated in the global or basic frame. However, shell element stress and strain are
evaluated in element space.

The total strain (8.5), elastic strain (8.6), and thermal strain (8.7) can all be requested
separately; see Section 8.1.16. The stress reported is always the Cauchy stress σc = C : εe;
see Section 8.1.18.

435

8.7.1. Stress/Strain Truth Table

The Exodus data format provides an element truth table. Element variables are defined
globally (for all element blocks), but output data is stored only for those blocks that have
entries in the truth table. Thus, in Sierra/SD if stress output is requested (see Section
8.1.18), then stress variables are defined for solids and shells. 2 Space is allocated in the
output Exodus file, and data is written only if it is applicable. Table 8-146 illustrates this
for stresses. A similar table can be generated for strains. Note that volume stresses always
start with “V” and surface stresses start with “S”. Note that “vonMises” is the only entry
that applies to both solids and shells.

2The variables are defined for solids and shells even if only one or the other occurs in the model

436

Table 8-146. – Element Stress Truth Table.
Variable Element
Name Solid Shell Beam

SStressX1 σtopxx
SStressY1 σtopyy
SStressXY1 τ topxy

SvonMises1 σtopvm
SStressX2 σmidxx

SStressY2 σmidyy

SStressXY2 τmidxy

SvonMises2 σmidvm

SStressX3 σbottomxx

SStressY3 σbottomyy

SStressXY3 τ bottomxy

SvonMises3 σbottomvm

VStressX σxx
VStressY σyy
VStressZ σzz
VStressYZ σyz
VStressXZ σxz
VStressXY σxy
VonMises σvm max(σvm)

Signed_VonMises ±σvm
Max_Principal_Stress ‖σ1‖

Intermediate_Principal_Stress ‖σ2‖
Min_Principal_Stress ‖σ3‖

Max_Principal_Stress_x σ1x
Max_Principal_Stress_y σ1y
Max_Principal_Stress_z σ1z

Intermediate_Principal_Stress_x σ2x
Intermediate_Principal_Stress_y σ2y
Intermediate_Principal_Stress_z σ2z

Min_Principal_Stress_x σ3x
Min_Principal_Stress_y σ3y
Min_Principal_Stress_z σ3z

ElemForce forces

437

8.7.2. Solid Elements

If stresses are requested, solid elements will output the values of stress at the element
centroid. The values reported are the engineering stresses in the global coordinate
system.

If principal stresses are requested, solid elements will output the three principal stress
vectors and magnitudes in order of descending signed value. The vectors are of unit length,
defined in the global coordinate system.

8.7.3. Shell Elements

Shell elements introduce two complexities to stress/strain recovery. First, it is often
important to recover data from the virtual surfaces of the elements (where the stresses are
highest). This requires data recovery at the top, mid-plane and bottom surfaces. Second,
there are no stresses or strains normal to the surface. Thus, stresses are naturally reported
in the surface of the element. This can also introduce confusion about the in-plane
coordinate frames. As shown in Figure 8-61, the stresses and strains are recovered in the
physical space x1, x2 coordinate frame, which has been mapped from the η1, η2 frame in
element space. Note that the direction of the x1 vector depends on the ordering of the
mesh, and may vary from element to element in the same surface mesh. Element
orientation vectors are selected with the eorient keyword described in Section 8.1.43. von
Mises stress, an invariant, is independent of the element orientation.

Stress recovery for the TriaShell is interesting. A TriaShell is a shell element created by
combining Allman’s triangle2 with a DKT element.8 Its stress vector ~σ = (σx,σy,σxy)T is
the sum of stresses ~σat for Allman’s triangle and ~σdkt for the DKT element,

~σ = ~σat+~σdkt. (8.12)

Allman’s triangle represents the membrane dof, i.e., (u,v,θz). If the element lies in the x-y
plane, then βx and βy are rotations of the normal to the undeformed middle surface in the
x-z and y-z planes, respectively.

{κ}=

 βx,x
βy,y

βx,y +βy,x

 (8.13)

{ε} is the strain vector, and [D] is the elasticity matrix for Allman’s triangle. The stresses
through the three surfaces of the shell element are the same. Therefore,

~σat = [D]{ε}. (8.14)

For the DKT element, z is the coordinate direction normal to the element, with z = 0
representing the mid-plane. [D] is the elasticity matrix.

~σdkt = z[D]{κ} (8.15)

438

Figure 8-61. – Tria3 Stress Recovery. Stresses are output in the orthogonal x1, x2 coordinate
frame in physical space, which has been mapped from the η1, η2 frame in element space.

η1

η2

x1
x2

element
triangle

physical
triangle

~σdkt does vary with the thickness of the element. Note, the above stress equations are
written with respect to a local element coordinate system as shown in Figure 8-61.

Combining the stress vectors from Allman’s triangle and the DKT element above yields the
stress vector for the element which is output in the local element frame.

For composite elements (such as QuadT, Quad8T and Tria6), the stresses are computed
from the underlying Tria3 element and then transformed to the element orientation of the
composite element. For the quad elements, the stress of the two central triangles is
averaged. Figures 6-25, 6-26 and 6-27 describe these composite elements.

8.7.4. Beam Elements

Reporting stresses for line type elements (Beams, Rods, Springs, etc) is even more
problematic than it is for shells. For many of these elements an axial stress could be
reported. But, for beam elements that stress could not include the effects of beam bending
unless details of the beam cross section were available. For some elements (such as a
spring) no concept of stress is even correct. As a consequence, we do not report stresses for
most line type elements. However, some recovery may be obtained using the element force
output (see Section 8.1.38).

For Beam2, Nbeam, and TiBeam elements (sections 6.9 to 6.11), axial stress will be
reported if stress is requested in the outputs section. Additionally, stress recovery points
may be requested using the stress recovery point keyword. For each stress recovery
point, the bending and 2 shear stresses will be reported (see input 8.2). Each stress
recovery point represents a point on the beam cross-section and is defined by a pair of
offsets in physical coordinates from the neutral axis of the beam. The von Mises stress at

439

each stress recovery point is reported, as well as the maximum von Mises stress over all the
stress recovery points. If no stress recovery points are requested, von Mises is taken to be
absolute value of the axial stress.

BLOCK beam_block
material=1
beam2

Area=8
I1=2
I2=10
J=7
stress recovery point 0.5 0.5

-0.5 -0.5
END

Input 8.2. Beam Stress Recovery Points Example

8.8. Echo

Results, in ASCII format, from the various intermediate calculations may be output to a
results file, e.g. example.rslt, where the file name is generated by taking the base name of
the input deck (without the extension) and adding the extension rslt. Output to the
results file is selected in the Sierra/SD input file using the echo section. An example is
given below, and the interpretation of these keywords is shown in Table 8-147.

echo
materials
elements
Jacobian
mesh
input on
nodes
MPC

end

We remark that for virtual blocks, element variables such as element force are also written
to the results file. Since only Joint2g elements are currently supported as virtual blocks,
the only element variable that can be written at this time is the element force, eforce.

440

Table 8-147. – Echo Section Options.
Option Description
ADiag diagonal of dynamics matrix
acceleration nodal accelerations (better in output section)
block block wise mass properties (used only following mass)
debug debug output
displacement nodal displacements (better in output section)
EForce element force for beams
ElemEigChecks element eigenvalues
elements element block info, i.e. what material,

element type, etc
Elmat element material properties
energy element strain energy and strain energy density
eorient element orientation
fatigue fatigue related parameters
force applied forces (better in output section)
GEnergies global kinetic and strain energy sums
block_energies block kinetic and strain energies
input (<bool>) echo of post-Aprepro input (for parse errors) – default = input on
input_summary summaries of many sections
Jacobian block summary of Jacobians
KDiag diagonal of stiffness matrix
line_weld Line-weld-specific output variables
mass mass properties in the basic coordinate system
materials material property info, e.g. E, G
memusage prints per processor per task memory use

to results file and an external text file
mesh summary of data from the input Exodus file
mesh_error mesh discretization error metrics
ModalVars modal force and amplitude for modal solutions (echo section)
MPC MPC equations
NLresiduals turns on residual output per iteration

of the Newton loop for nonlinear solution methods
nodes nodal summary
residuals residual vectors
rhs Right Hand Side vector (better in output section)
strain element strains at centroids
stress element stresses at centroids
subdomains “0:3:6,10” Controls which processor will output results file
threading_summary threading summary table
timing_summary timing and threading summary tables
velocity nodal velocities (better in output section)
vonMises von Mises stress only
vrms RMS quantities (random vibration only)

441

8.8.1. Mass Properties

The mass properties may only be reported in the Echo section only. The mass properties
are the total mass, the center of gravity and the moments of inertia of the system. They
are reported in the basic coordinate system. Furthermore moments are about the origin,
not about the center of gravity. Masses are reported in a unit system consistent with the
input, with or without the wtmass parameter (see Section 3.3).

Limitations. Although mass properties are reported for any problem, they are undefined
and nondeterministic in certain categories of analyses. Any model with a Superelement
6.31 has undefined mass properties. Also, mass properties are undefined for all acoustic
problems, including structural acoustic models and Wet Modes simulations. Finally mass
properties are undefined for all Waterline simulations.

An additional option of block may be used in the echo section to output the block wise
mass properties to the results file. Please note that the block wise mass properties, though
summed for all processors (if running on a parallel machine), are only output to the result
file from the first processor (processor 0). The block wise mass properties option, called
block, reports the number of blocks, the mass of each block, and the center of gravity of
each block along the x, y, and z axis. Please note that block may only be used in the echo
section following the mass option as shown below.

echo
materials
elements
mass=block
nodes

end

If the keyword mass does not directly precede block in the echo section, then Sierra/SD
will abort with the following error.

Unrecognized "echo" option "block".
Aborting.

Requesting both massblock and mass=block causes output to the result file of only the
global mass properties. If only block-level mass properties are desired, then specifying
mass=block will suffice, as follows

echo
mass=block

end

442

8.8.2. Multipoint constraints

Text descriptions of the MPC equations are output to the result file using MPC . This is a
check on the input deck. An example of the output format is as follows

MPC
coordinate 0

25 P 1
106 P -1

// G = 0.000000
// the source is global

END

In this case, the MPC equation is constraining the acoustic pressure in nodes 25 and 106 to
be equal in the global (default) coordinate system.

8.8.3. ModalVars

modalvars text output which contains modal forces and modal amplitudes for modal
based superposition solutions including “modaltransient” and “ModalFrf”. Two text files
are written: Qdisp.txt and Qforce.txt. Each line of the file contains data for a solution
increment (a time or frequency step). For transient solutions, each column corresponds to a
mode in the solution. Because FRF solutions are complex, two adjacent columns describe
the complex modal amplitude (or force) for a mode. In terms of the physical force at time
tn, F (tn), and the ith eigenvector φi, the modal force and displacements are

fqi(tn) = φTi F (tn), u(tn) =
∑
i

φiqi(tn).

The expressions in the frequency domain are similar.

The text files are readable by either MATLAB or MS/excel.

8.8.4. Subdomains

In parallel calculations, one results file is written per subdomain. Only data associated
with that subdomain are written to the file. By default, results are only written to
subdomain 0 (the root processor), and in the results for subdomain 0 will always be
output. Use the “subdomains” option to specify additional subdomains for which data will
be written. The subdomains specification is made using a MATLAB like string, as
detailed in Section 3.1. For example,

subdomains ’0:2:8’

443

selects subdomains 0, 2, 4, 6 and 8 (again, subdomain 0 will always be output, and so it is
redundant here). The following selects subdomains 0, 2, 3, 4, 6, 8, 9 and 15.

subdomains 0:2:8,3:3:9,15

In addition, the keyword “all” selects all subdomains.

8.8.5. Memusage

The Memusage keyword selects memory usage information output for the results file. In
addition, it also requests that a per processor, per task break down be written to a
separate text file. The memory in the text file is shown in megabytes. The output for the
text file will be formatted as follows:

1 2 3 4
40 41 41 42 "initialization"
23 12 15 15 "assembling matrices"
45 56 65 54 "initializing solver"
10 25 12 52 "writing output"

The primary use of the memory usage printing is to diagnose where or why memory is
being exhausted by an analysis.

Elmat The bulk modulus, mass density and shear modulus of each element are reported if
the Elmat keyword is added to the echo section.

444

9. Contact

9.1. Tied Surfaces

Tied surfaces provide a mechanism to connect surfaces in a mesh that will always be in
contact. Because the surfaces are always tied, the constraints may be represented by a set
of linear multipoint constraints 3.9. Tied surfaces are also known in the literature as glued
surfaces or as tied contact. They are used almost exclusively to combine two surfaces of a
mesh that have not been meshed consistently.

There are a number of ways of combining surfaces that have not been consistently meshed.
The simplest method constrains the nodes of one surface (node-surface) to lie on the faces
of another surface (face-surface). In this method, the constraint is called inconsistent
because the mesh does not ensure that linear stress will be maintained across the
boundary. The stress and strain in the region of the constraint will be wrong. However,
loads are properly transferred across the boundaries, so a few element diameters away from
the boundary, the stresses and strains should be approximately correct.

Tied surfaces can currently be specified for structural-structural interfaces,
acoustic-acoustic interfaces, and structural-acoustic interfaces (i.e. wet interfaces). The
syntax in the tied data section is the same. For structural-structural interfaces, the nodal
displacements on the node-surface are constrained to lie on the faces of the face-surface. In
the last case, the nodal acoustic pressures on the node-surface are constrained to match the
interpolated value of pressure on the face-surface.

For tied structural-acoustic interfaces, it is necessary to ensure a weak continuity of both
stress and displacement (velocity) across the wet interface.63,42 Also, we recommend that
the acoustic surface be defined as the face-surface (and hence should have its sideset
number listed first in the input deck). Defining the structural surface as the face-surface
sometimes causes an error related to singular subdomain matrices.

A simulation may have multiple tied surfaces as long as certain requirements are met. For
example, acoustic-acoustic and tied structural-acoustic data blocks in the same input deck
are supported. However, it is necessary that each sideset be exclusively attached to either
structural elements or acoustic elements. A sideset containing both acoustic and structural
elements is not supported. This does not restrict the possible types of analysis. It can
increase the number of tied data blocks. However, this extra input will reduce confusion
and likely also reduce potential modeling errors.

The keyword transverse controls the constraints on transverse displacements. Transverse
displacements can be tied or slip. Its default is tied. The tied option is the standard
inconsistent tied surface approach. The slip option only constrains normal degrees of
freedom between the surfaces. In this option, the tangential degrees of freedom are free to
slide. This would be the case if there was no friction between the surfaces. The friction
option for specifying a simple friction model is not currently supported.

445

In a tied data block, if the tied contact is inconsistent, i.e., the method is not mortar or
other options, then by default the gap is removed. Gap removal only works with tied
data. In the tied data section, the order of the surface ids is important. The first surface id
becomes the face surface, and the second becomes the node-surface. Gap removal moves
node-surface nodes to the face surface. Set gap removal to off to skip gap removal.
ACME’s gap and push back vector quantities provide the gap. Updated coordinates
instead of the original coordinates appear in the output Exodus file, and are also used by
the system matrices.

Debugging tied contact is easier using the gap removal solution case 4.34.

9.1.1. Contact Normal Vectors

For all the contact type interactions, including tied surfaces, tied joints, and contact
definition the algorithms used restrict the search to matching faces that have opposing
normal vectors. For solids, this is seldom an issue. The normal vectors for a solid are
always outward from the solid, so two interacting solids (unless they occupy the same
volume), will naturally have opposing normal vectors. However, the situation for shell-shell
or shell-solid interactions can be more complicated.

Sidesets may be created from the top or bottom surfaces of the shells. Thus, the shell
surface has a natural normal direction determined by its connectivity, and the sidesets
generated from the shells have a direction too. The sideset direction may align or oppose
the direction normal of the shell itself. If the shell normal does not oppose the normal of
the mating surface, no interactions will be found, and the surfaces cannot be tied. See
Figure 9-62.

446

Normal Opposed. Interactions are Possible

Normals are aligned. No Interactions are Possible

Figure 9-62. – Shell Normal in Contact or Tied Interactions.

447

9.1.2. Mortar Methods

Mortar methods may also be used to tie the surfaces. This is currently under development,
but some capability is available. Large tied surfaces using the mortar methods may have
many fully coupled constraints which can overwhelm most parallel solvers. The cost in
computing the mortar contribution is higher than the inconsistent method, but the
solution will typically be much better in the region of the constraint.

Two different mortar methods are available. Both constrain surfaces together in an integral
(or weak) sense. Standard mortar methods are somewhat simpler, but can result in a
constrained system which fully couples all the nodes of both surfaces together in a single
constraint. Dual mortar methods are much more friendly to the linear solver, as the
constraint system decouples the constraints similarly to what is seen in node-face contact.
The dual mortar method is the default.

Mortar methods are specified by adding mortar to the tied data block. To select the type
of method, standard or dual, in the parameters block specify MortarMethod=standard or
MortarMethod=dual respectively. 3

9.1.3. Node to Face

Tied surfaces are specified by a listing of face-surface and node-surface side sets. Any
number of tied data blocks may be specified in the input. Each tied data block represents a
single logical pairing of constraint side sets.

TIED DATA
tied faces 12
tied nodes 18
name "tying_12-18"
transverse slip
search tolerance = 1e-7
edge tolerance = 1e-8
gap removal = on

END

In the example above, sideset 12 is the face-surface. Side set 18 is the node-surface. Each
node in the node-surface may be tied to the nearest face in the face-surface by a constraint
equation. The transverse degrees of freedom are allowed to slip in this example. If the
transverse keyword were omitted, standard tied surfaces would be used.

Tied surfaces use a node-face search algorithm. In this algorithm, the “search tolerance”
represents the normal distance from a node on one surface to a corresponding face on the
other. Thus, the search tolerance will typically be small and represents the amount the two

3There is no means of applying standard mortar methods to some interactions, and dual mortar methods
elsewhere.

448

Node−to−Node
Node−to−Face

Figure 9-63. – For node-to-node searches the search tolerance, must be large enough to
capture nearby nodes. For node-face searches (as used in tied surfaces), it should only capture
the nearby surface.

surfaces may not be coincident. This is in contrast to a node-to-node search, where the
“search tolerance” represents a search radius. See Figure 9-63.

Special care should be used when using the “edge tolerance”. If this tolerance is too large,
non-intuitive interactions can be created.

Note: The current implementation ties a face-surface that con-
sists of the two-dimensional faces of shell or solid elements. It
is not possible to tie a node to the one dimensional edges of shell
elements.

The relevant parameters for tied surfaces are shown in Table 9-148.

Table 9-148. – Tied Surface Parameters
Parameter type description
Name String name of tied data block, useful for diagnosing

error messages, defaults to tied
Surface integer pair face-surface and node-surface sidesets

separated by comma or space
Tied Faces <sideset> face-surface sideset
Tied Nodes <sideset> node-surface sideset
Search Tolerance Real face normal of search tolerance

defaults to 1e-8
Edge Tolerance Real search tolerance beyond an edge facet

defaults to 1/10 search tolerance.
Method String inconsistent (default most solvers)

mortar
Transverse String tied (default)

slip (transverse displacements can slip)
Gap Removal String Yes (default: for inconsistent only)

No
smooth angle Real maximum angle for smoothing (def=30)
smoothing resolution String “node” or “edge” based

449

Smoothing parameters may be needed to control smoothing of the normal. Figure 9-64
illustrates the normal definitions on a faceted surface. The discontinuity in normal vectors
can be an important consideration on curved surfaces where faceting affects tangential
sliding. Smoothing parameters are illustrated in Figure 9-65 and include the following .

smooth angle If an angle between two faces exceeds this value (in degrees), then the angle
is considered to be “sharp”, and no smoothing is done. Default is 30o.

smoothing resolution The resolution method can be either node based, or edge based.
This may be needed to control smoothing on edges that include both a sharp and a
non-sharp edge. Default=node.

Figure 9-64. – Normal Definitions on Faceted Geometry. When low order elements are used
to describe a curved boundary, the normal is poorly defined at the edge of the facets.

}

smooth distance

smooth angle

Figure 9-65. – Smoothing Parameters for Surface Normal Vectors. No smoothing occurs
for faces that are misaligned by more than the specified “smooth angle". Within the “smooth
distance", normal vectors vary linearly with relative distance from the node.

9.2. Contact Definition

The contact definition block provides flexible syntax to define tied MPCs. The contact
definition provided a similar capability to Tied Data (see Section 9.1) but with a more
powerful and flexible ways to define contact surfaces. The contact definition capability
leverages the same Dash contact algorithms used in Sierra SM. Both the syntax and
capability of the Dash contact definition is compatible with SM recommending Dash
contact for both SM/SD hand-off analyses and analyses with a lot of general contact.

A brief description of contact definition commands is given here. More detailed
descriptions of how contact surface and interaction definition commands function can be
found in the Sierra Solid Mechanics User Manual.60

The full set of available contact commands are as follows:

Begin Contact Definition <name>
contact [surface|nodeset] <surf_name> contains <strings>
skin all blocks = on [exclude <names>]

450

gap removal = off|on(on)

Begin Interaction Defaults
general contact = off|on(off)
self contact = off|on(off)
normal tolerance = <Real>
tangential tolerance = <Real>
constraint formulation = Node_Face|Face_Face(Node_Face)
friction model = tied|frictionless(tied)

End Interaction Defaults

Begin Interaction
normal tolerance = <Real>
tangential tolerance = <Real>
side a = <string_list>
side b = <string_list>
surfaces = <string>
interaction behavior = No_Interaction
constraint formulation = Node_Face|Face_Face
friction model = tied|frictionless

End Interaction

Begin Dash Options
separate disconnected mesh components = true|false(false)
ignore_shells = true|false(false)
cutoff variable <nodal_variable> >|< <Real>

End Dash Options
End Contact Definition

Information is presented in the format command = option (default) format. For example
gap removal is on by default. Debugging contact is easier using the gap removal solution
case 4.34. Gap removal is another name for initial overlap removal.

A begin interaction section can only define interacting surfaces, if the surface is
assigned a local name. To define a surface named surf_name, use

contact surface <surf_name> contains <entity_strings>

Here ‘entity_strings’ may reference blocks, sidesets or nodesets in the input mesh. It
may reference a block, surface, or node set by its name. Or mesh entities can be accessed
using the Sierra/SM convention, by index using ’block_##’, ’surface_##’ or
’nodelist_##’.

General contact is a far-reaching capability. If there are 2 (i.e. more than one) interaction,
and general contact is on, then the contact module automatically detects all interactions

451

between any pair of surfaces (except self interactions, and assuming that self contact is
off).

9.2.1. Defining Contact Surfaces

Each contact definition block is a self-contained description of contact surfaces and how
those contact surfaces interact. Several options are available for defining contact surfaces
as shown in the following examples.

// Create contact surface from exterior skin of blocks
contact surface fixture contains block_1 block_9 block_12

// Create contact surface from union of sidesets
contact surface bolt_flange contains surface_1 surface_10

// Short cut to create contact surface based on the
// exodus part names.
contact surface block_7
contact surface surface_10
contact surface bearing contains bearing1 bearing2

// Create contact nodeset from union of node sets
contact nodeset ns1 contains nodelist_7 nodelist_11

// Create contact nodeset containing all nodes in a
// set of blocks
contact nodeset ns2 contains block_15 block_19

// Generate exterior skins for all blocks
skin all blocks = on

// Generate exterior skins for most blocks
skin all blocks = on exclude block_7 block_11

The skin of a finite element block contains all the exterior faces. When using ’skin all
blocks’ one contact surface is created for each block in the mesh, the contact surface is
given the same name as the block. The block skinning algorithm is described in the Sierra
SM Users Manual. For a model using only solid elements block skinning relieves the user
from having to set an extensive number of sidesets in the input mesh.

Note the commands that create contact surfaces from blocks only work on solid and shell
elements (hexes, tetrahedra, wedges, quads, triangles, etc.). If “ignore_shells” is set to true
in the Dash options block, then all-to-all contact will ignore shells. Sidesets can be used to
define contact surfaces on either solid or shell blocks. Contact nodesets can be defined on

452

any element type, solid, shell or beam. When defining interactions a contact nodeset must
be paired with a sideset or block skin in order to find node-face constraints. Two contact
nodesets cannot directly interact.

In rare situations poorly posed cyclic/self contact constraints are created that are
problematic for the linear solver. First the model is divided into disjoint components
(without shared nodes). Pairs of disjoint components then tie to each other with one sided
node-face interactions. Multipoint constraints tie nodes on one side of the interface to faces
on the other side of the interface. Parts sharing nodes may have no unique node-face
pairing. A conformally meshed part that contacts itself has no unique pairing.

If no unique pairing exists, nodes on side A of the interface generate MPCs with faces on
side B and also nodes on side B generate MPCs with the faces of side A. The constraints
may be over-determined. Some redundant constraints are removed. Determining unique
constraints is an open problem.

The Interaction Weight Matrix shows the potential node-face interactions specified in the
input deck. It is in the log file. A pair of surfaces must be in proximity to actually
interact.

disjoint ifIJ = JI = 0
dependent nodeI ifIJ = 1andJI = 0
symmetric ifIJ = JI =H

error otherwise

(9.1)

Ideally the weight is either 1 or 0. This indicates one-way node-face pair where nodes on
one side of the interface interact with faces on the other side. Self contact is denoted by H
for half. For self contact nodes on side A of the interface interact with faces on side B and
also nodes on side B interact with faces one side A. Such self contact constraints are often
redundant and cyclic. The attempt to remove and make the contact constraints uniquely
determined creates messages and warnings about removed and redundant constraints.
Even after the redundant constraint removal step the self contact constraints can cause
solver robustness and accuracy issues. Thus, self contact should be avoided.

The disconnected component finder is available for setting up contact surfaces. Say a mesh
contained a flashlight with four batteries, and the four batteries were all in the same
element block in the mesh. The disconnected component finder would split this battery
block into four separate contact surfaces. The disconnected component finder is useful for
setting up interactions in a way that avoids self contact. See the Sierra/SM User
Manual60 for more details on use of the disconnected component finder.

Begin Dash Options
separate disconnected mesh components = TRUE|FALSE(FALSE)

End Dash Options

Surfaces may be defined to be in or out of contact solely based on proximity. The cutoff
variable Dash option enables users to further filter contact based on any nodal input
variable. Fine-grained contact information determined by Sierra/SM may be passed to

453

Sierra/SD to refine its contact constraints. Including the following lines in a contact
definition will ignore contact where the Sierra/SM celement field is below 0.55 on the
nodes of the node-face constraints.

Begin Dash Options
cutoff variable celement < 0.55

End Dash Options

Multiple such lines may be defined in a single Dash Options block. This would enable the
filtering of constraints based on the union of multiple nodal variables, or only retaining
contact where a variable is inside a range (a,b) (i.e. cutoff variable var_name < a and
cutoff variable var_name > b).
cutoff variable is currently BETA release.
Enable with the “- -beta” command-line option.

9.2.2. Setting up Contact Interactions

Once the contact surfaces are defined, the next step is to set up the interactions between
those contact surfaces. The interaction defaults block can be used to define both which
surfaces will interaction with each other and how those surfaces interact. One and only one
interaction defaults block may be present in a contact definition. The interaction block
can enforce contact between specific surface pairs and set the interaction parameters for
that pair (overriding the interaction defaults behavior for the surface pair.) Any number of
interaction command blocks may be present in the contact definition.

Contact is used to tie structures together that are in adjacent. The normal and tangential
tolerance define how far away from a face a node can be and still find contact. By default,
a reasonable normal and tangential tolerance is automatically computed in the Dash
contact library based on a small fraction of the characteristic element size. Thickness of
shell elements are also considered in the default tolerance. For shell blocks the default
search tolerance is set to at least sixty percent of the maximum element thickness of the
elements in the block.

BEGIN CONTACT DEFINITION <name>
BEGIN INTERACTION DEFAULTS

GENERAL CONTACT = OFF|ON(OFF)
SELF CONTACT = OFF|ON(OFF)
NORMAL TOLERANCE = <real>
TANGENTIAL TOLERANCE = <real>
CONSTRAINT FORMULATION = NODE_FACE|FACE_FACE(NODE_FACE)
FRICTION MODEL = TIED|FRICTIONLESS(TIED)

END INTERACTION DEFAULTS

BEGIN INTERACTION

454

SIDE A = <string_list>
SIDE B = <string_list>
SURFACES = <string_list>
NORMAL TOLERANCE = <real>
TANGENTIAL TOLERANCE = <real>
CONSTRAINT FORMULATION = NODE_FACE|FACE_FACE
FRICTION MODEL = TIED|FRICTIONLESS
INTERACTION BEHAVIOR = NO_INTERACTION

END INTERACTION
END CONTACT DEFINITION

Command options:

• general contact: On means that every surface will contact every other surface. By
default, the Dash contact library will pick which surface is used for nodes and which
for faces in each surface-to-surface pairing automatically. Generally finer meshed
surface will provide the nodes and the coarser the faces. Additional considerations
may also be taken into account for selection of node and face surfaces such as
avoiding cyclic constraints.

• self contact: Self contact on indicates a surface may contact itself, this could occur
if a structure folds over on itself. Self contact should generally be avoided in SD as it
leads to over-constraint problems.

• normal tolerance and Tangential Tolerance: The default face-sized based search
distance can be overridden by manually specifying the normal and tangential
tolerances. These tolerances have units of length.

• constraint formulation: The constraint formulation line defines the constraint type
to be used. Only the node_face option should be used with Sierra/SD. The
face_face option is experimental.

• friction model : The friction model line selects the type of contact constraint,
either tied or frictionless. Tied contact ties all translational DOFs together at
the interface preventing any normal or tangential motion. For structural problems
each of the three translational degrees are constrained together. Rotational DOFs are
never tied. For acoustic-acoustic contact the acoustic degree of freedom is tied
together. For structure-acoustic contact the normal-motion of the structure is tied to
the acoustic degree of freedom. The frictionless keyword selects sliding contact that is
tied in the normal direction only. For frictionless structural contact only the
surface-normal motion of the contacting surfaces are constrained together, the
surfaces are free to slip in the tangential directions. The normal direction for the
frictionless constraint is taken from the normal of the contacting face. For
acoustic-acoustic or structural-acoustic contact frictionless contact is equivalent to
tied.

455

• SIDE A SIDE B : For node-face contact the nodes are defined by the B surface and
the faces by the A surface. If multiple surfaces are given for side A or side B, then the
faces of each side A surface will be constrained to then nodes of each side B surfaces.

• surfaces defines a set of surfaces in contact. The Dash library picks the node-face
pairing automatically based on relative mesh density and other considerations such as
avoiding cyclic constraints. If more than two surfaces are given a contact interaction
will be formed between each surface in the list and each other surface in the list.
Using SIDEA or SIDEB and SURFACES commands in the same interaction
section will cause an error.

• interaction behavior The special interaction behavior command allows turning off
contact between specific surface pairs. The no_interaction option would generally be
paired with interaction defaults general contact on and used to turn off specific
pairings where contact should not occur, such as slide lines.

9.2.3. Gap removal

As with tied surfaces 9.1, 4.34 the Contact Definition by defaults removes gap from the
interaction constraints. Gap removal can optionally be turned off. All contact constraints
are node-on-face contacts. Gap removal is accomplished by moving the node to the face.

GAP REMOVAL = OFF|ON(ON)

The rewards and risks of gap removal are described in Section 4.34.

Gap removal will trigger output of an element quality table listing the worst element in
each block before and after gap removal. The element quality metric used in this table is
not consistent with Sierra Solid Mechanics. Element condition number is used instead.
This maintains consistency with other features within Sierra Structural Dynamics, and
with other Sierra applications such as Cubit.

The table will begin with the header shown below:

==================== ELEMENT CONDITION QUALITY INFORMATION =====================
A value of 1.0 is an ideal element. As the value approaches INF the quality is
decreasing. Values less than or equal to zero indicate the element cannot
compute condition number. For example a beam, conmass, Rbar, etc. A value of
N/A also means no shape metric exists for that element topology. Element quality
can be plotted on the mesh with the ElementQuality variable, triggered by the
gap_removal solution case.
-------------------------+-------------+------------+-------------+-------------

The table contents below the header are too wide to fit in this document.

456

9.2.4. Examples

// Most basic contact definition to tie everything that touches
Begin contact definition

skin all blocks on
begin interaction defaults

general contact = on
end interaction defaults

End contact definition

// Tie a few specific surfaces, like in ’tied data’ block
begin contact definition

contact surface s2 contains surface_2
contact surface s3 contains surface_3
contact surface s4 contains surface_4
begin interaction

side A = s2
side B = s3 s4
normal tolerance 0.25

end interaction
end contact definition

// All-to-all contact with some custom tolerances
begin contact definition

skin all blocks = on
begin interaction defaults

general contact = on
normal tolerance 1e-3
tangential tolerance 1e-6

end interaction defaults
end contact definition

// Tie the nodes of the two bolt flanges to a fixture block
begin contact definition

contact nodeset boltFlange1 contains nodeset 901
contact nodeset boltFlange2 contains nodeset 902
contact surface fixture contains blocks_1 block_3 block_4
begin interaction

side A = fixture
side B = boltFlange1 boltFlange2

end interaction
end contact definition

457

// All-to-all contact, but turning off tying of a specific
// surface pair and using sliding contact for different
// surface pair.
Begin contact definition

skin all blocks = on
begin interaction defaults

general contact = on
end
begin interaction

surfaces = piston piston_housing
friction model = frictionless

end-interaction
begin interaction

surfaces = drive_shaft drive_bearing
interaction behavior = no_interaction

end interaction
End contact definition

9.2.5. Notes and Usage Guidelines

• Multiple ’begin contact definition’ blocks may be included in a single analysis.
However, as with Sierra/SM using multiple contact definition blocks is generally
discouraged. If multiple contact definitions are used, then the surfaces used in the
contact definitions can not overlap. If the same surfaces are used in multiple contact
definitions duplicate and/or incompatible constraints may be found between the
contact definition blocks causing solver difficulty.

• Contact constraints are ultimately enforced by translational MPCs. The MPCs
generated by contact tie only translational degrees of freedom.

• Self contact (contact constraints generated from a surface folding over on itself) are
often over-determined and cannot be enforced accurately. Though the contact
definition can find such self contact constraints, the use of self contact should be
avoided.

• If contact constraints are defined at a significant gap those constraints will artificially
impede the rotation of the model. Gap removal can help with this issue, but it is
recommended to only use contact to tie objects that are in close physical proximity.

• Use the ’outputs’ option [constraint_info] to visualize more information about the
generated contact constraints. The nodes of a node-face contact constraint will have
a ’1’ for [node_face_mpc_count] output. The [mpc_status] nodal field will be
painted with ’1’ for any node involved in a contact constraint on either the node or
face side. If any nodes have the [node_face_mpc_both_node_and_face] flag this
could indicate an issue of over-constraint.

458

9.2.6. Differences Between SM and SD Defaults

• By default, SD uses node-face constraints. SM uses face-face constraints by default.
Face-face constraints may be optionally used within SD. However, face-face
constraints are considered experimental for SD at this time and not recommended.

• By default, SD will try to remove the gap from contact constraints. SM does not
have a gap removal option at this time.

• In SD the friction model defaults to ’TIED’. In SM the friction model defaults to
’FRICTIONLESS’.

• The SD friction model is a linearization of the SM frictionless model. A key
difference is that in SD the frictionless constraint is free to slide on the face but can
have no motion in the normal direction of the face. In SM the sliding along the face
is also unconstrained, the node is prevented from penetrating the face, but differing
from SD the frictionless constraint can open gap and separate the surfaces. This
different behavior for the positive and negative normal directions is a fundamentally
nonlinear behavior not applicable to linear structural dynamic analysis.

9.3. Lofted Surfaces and Gap Removal

Lofted surfaces are important because analysts often build meshes with an initial gap
between the surfaces. If standard methods are used to tie the surfaces, but the separation
(or lofting) is not taken into account, then the constraints are no longer consistent with
rigid body motion. Generally this means that the rotational rigid body motion introduces
strain into the system.

There is a gap removal 4.34 solution.

9.3.1. Example

This example illustrated in Figure 9-66 uses the coordinates listed in Table 9-149. In this
figure, the face (represented by nodes 1-4) constrains each of the 3 nodes (nodes 5, 6, and
7.) Node “6” is on the face. It will be clear that standard methods apply the proper
constraints. However, nodes “5” and “7” are offset from the face. As a consequence,
constraint equations written for a node constrained to the face introduce errors when
applied to the lofted node.

459

1

2

3 4

6

5

7

Figure 9-66. – Lofted Constraint Example.

Node Coordinates
1 0 4 0
2 0 2 0
3 2 0 0
4 4 0 0
5 1 3 0
6 1 1 0
7 3 1 0

Table 9-149. – Coordinates of Face (red) and Nodes (blue).

9.3.2. Projection Approach

The constraint equations from a conventional approach (meaning that the constraints are
written by projecting the node location to the plane of the face, but not adjusting for the
lofting) are shown in Table 9-150. These equations are not orthogonal to rigid body modes,
and as a consequence, there are only two zero energy modes for this system rather than the
3 we anticipate. 1

ux(1) +ux(2)−2ux(5) = 0
uy(1) +uy(2)−2uy(5) = 0
ux(2) +ux(3)−2ux(6) = 0
uy(2) +uy(3)−2uy(6) = 0
ux(3) +ux(4)−2ux(7) = 0
uy(3) +uy(4)−2uy(7) = 0

Table 9-150. – Conventional Constraint Equations.

These constraints are represented by the matrix C, where the x and y dofs are grouped

1All motion out of the xy plane has been eliminated.

460

together.

C =

1 0 1 0 0 0 0 0 −2 0 0 0 0 0
0 1 0 1 0 0 0 0 0 −2 0 0 0 0
0 0 1 0 1 0 0 0 0 0 −2 0 0 0
0 0 0 1 0 1 0 0 0 0 0 −2 0 0
0 0 0 0 1 0 1 0 0 0 0 0 −2 0
0 0 0 0 0 1 0 1 0 0 0 0 0 −2

The three rigid body vectors (in this 2D frame) are,

R =

 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
−3 −1 −1 −1 1 1 1 3 −1 0 0 0 0 1

where the first two vectors represent translations, and the last is a rigid body rotation
about point “6”. The product of C ∗R′ can be computed.

C ∗RT =

0 0 −2
0 0 −2
0 0 0
0 0 0
0 0 2
0 0 2

Each row of this matrix corresponds to a constraint equation from Table 9-150. Each
column is associated with one of the three rigid body vectors. The translational rigid body
vectors are orthogonal to the constraint matrix; the products are zero and no strain is
induced. However, rotation about node 6 induces strain. The constraints are not invariant
to rotation.

In a transient dynamic analysis with modest rotations and small gaps the effects of these
constraint errors are often imperceptible. However, for large rotations or large gaps they
may become apparent. They are always observable in modal analysis where they manifest
as nonzero rigid body modes.

Mitigation Strategies As demonstrated in the previous section, constraint errors can
introduce resistance to either translational or rotational rigid body motion. There are
several strategies to mitigate these issues.

1. The analyst building the model ensures there are no projection errors.

2. Correct the initial geometry (using gap removal) so there are no projection errors.

3. Modify the constraints through algebraic means to ensure that they are orthogonal to
rigid body motion.

4. Use the constraints appropriate to the lofted geometry. The software to do this is
currently only available for spot welds.

If these methods cannot be applied, then the analysis must absorb the errors due to the
constraint errors introduced by projection.

461

9.4. Spot Welds

The spot weld is currently BETA release.
Enable with the “- -beta” command-line option.

Spot Welds are a flexible alternative to contact in which each node-face interaction is given
a stiffness in the normal and tangential directions. Spot Welds can be used to represent
discrete attachment points such as rivets, or as a scalable alternative to tied joints. In
either case, Sierra/SD Spot Welds share syntax and functionality with Sierra/SM, with
a slightly altered implementation.

An individual Spot Weld is defined by a surface and a nodeset. It may represent a
bolt/rivet/screw or something similar. An individual Spot Weld stiffness has units of
force/length.

An area-weld-mode Spot Weld is defined by a pair of surfaces. It may represent a cohesive
zone [60]. Its stiffness has units of force/area.

Spot Welds may be specified between two parts which are not touching. A gap at a Spot
Weld interface will not cause grounding of rotational rigid body modes.

9.4.1. Syntax

Spot Weld
nodeset = <list(nodeset)>
node set = <list(nodeset)>
second surface = <list(sideset)>
remove node set = <list(nodeset)>
sideset = <list(sideset)>
side set = <list(sideset)>
surface = <list(sideset)>
remove surface = <list(sideset)>
normal displacement function = <function>
normal displacement scale factor = <real>
tangential displacement function = <function>
tangential displacement scale factor = <real>
ignore initial offset = <bool>
search tolerance = <real, gt 0>

End

This table is a little confusing at first glance, and a few words of explanation are helpful.
The allowable inputs are either ’sideset+nodeset’ or ’sideset+second_surface’.

The remove surface and remove node set options define the spot weld by boolean
operations of multiple nodesets/sidesets. Some (maybe all) SD developers are less confident
that these remove options are actually hooked up fully in SD.

462

The "ignore initial offset" option affects where the stiffness functions are evaluated if the
spot weld is defined with an initial gap.

Spot welds are parallel scalable in a way that tied data is not scalable. Namely, while each
Spot Weld is stored on a unique subdomain, Tied Data is implemented by storing the
multi-point constraints on all processors.

Tangential inputs like stiffness are scalars representing a radial stiffness. In a cylindrical
coordinate system a Spot Weld has a axial stiffness, a radial stiffness, and zero θ stiffness.

9.4.2. Outputs

Spot Welds support 13 element variables, all of which are triggered by the spot_weld
keyword.

1. "spot_weld_scale_factor" : Area scale factor if in second surface mode

2. "spot_weld_normal_force" : Normal force on dependent node

3. "spot_weld_tangential_force" : Tangential force on dependent node

4. "spot_weld_norm_stiffness" : Normal stiffness of element

5. "spot_weld_tang_stiffness" : Tangential stiffness of element

6. "spot_weld_normal_displacement" : Normal displacement of dependent node

7. "spot_weld_tangential_displacement" : Tangential displacement of dependent node

8. "spot_weld_initial_offsetx" : Initial gap vector, x component

9. "spot_weld_initial_offsety" : Initial gap vector, y component

10. "spot_weld_initial_offsetz" : Initial gap vector, z component

11. "spot_weld_initial_normalx" : Initial normal vector, x component

12. "spot_weld_initial_normaly" : Initial normal vector, y component

13. "spot_weld_initial_normalz" : Initial normal vector, z component

463

9.4.3. Specifying Spot Weld Stiffnesses

Sierra/SD models Spot Welds as linear spring elements, but shares syntax with
Sierra/SM. Therefore, we assign stiffness to the elements by estimating the derivative of
the normal and tangential displacement XY functions at the initial state. If the option
ignore initial offset is set to yes, then the normal stiffness function tangent is
evaluated at X = 0. If the option ignore initial offset is off (the default) the the
normal stiffness function tangent is evaluated at X = initial_gap. The tangential function
is always evaluated about X = 0.

Both functions should have positive slope to have positive stiffness, following static pull
test conventions. The normal function should be defined for both positive (tensile) and
negative (compressive) values of X. For the tangential function radial displacement is
always positive so only the positive X portion of the function has meaning.

Analysts looking to specify the stiffness directly should use a linear function, for example:
y = x as the displacement function, then input their stiffness as a scale factor. For
example:

function y_equals_x
type analytic
evaluate expression ‘‘x’’

end
begin spot weld

node set = nodelist_1000
surface = surface_2000
search tolerance = 1.0e-4
normal displacement function = y_equals_x
normal displacement scale factor = 1.0e+6
tangential displacement function = y_equals_x
tangential displacement scale factor = 1.0e+5

end

Best practices will evolve with time and usage, but perhaps consider the neighboring
material stiffness divided by the distance between parts E/L as an initial stiffness guess in
second surface mode. Try to avoid setting the stiffness too high (like 1e16), as it will
impact the conditioning of the linear system and the ability of the solver to converge.
Contact is the proper tool for infinite interface stiffness.

9.4.4. Usage at discrete points

This is the most basic use case, where we apply the same linear stiffness to each constrained
node within search tolerance. Ideally, each node in the provided nodeset would represent a
different attachment point in the model. One node per welded spot; a literal Spot Weld.

464

Spot Weld
sideset = bulkhead
nodeset = rivet_nodes
normal displacement function = y_equals_x
normal displacement scale factor = 1e4
tangential displacement function = y_equals_x
tangential displacement scale factor = 2e3
search tolerance = 0.25

End

9.4.5. Usage as an alternative to Tied Joint or Surface Contact

Here we use second surface to define the dependent side of the interaction instead of
using nodeset. In this mode, the stiffness of each node-face interaction is scaled by the
area of the faces attached to the dependent node. The user is now defining the stiffness per
unit area of the joint. This mode is expected to provide a solution which converges with
mesh refinement.

Spot Weld
sideset = independent_faces
second surface = dependent_faces
normal displacement function = y_equals_x
normal displacement scale factor = 1e8
tangential displacement function = y_equals_x
tangential displacement scale factor = 1e8
search tolerance = 0.1

End

This method has several advantages over Tied Joints.

• Each node-face interaction connects exactly one face to one node. This avoids the
connectivity problems of Tied Joints when mesh density is high.

• The connections between parts are distributed across the interface, which preserves
the bending and ovaling modes of the interfacing parts.

• Spot Welds create neither Type-1 nor Type-2 constraints; only stiffness.

Additionally this method has potential advantages over Tied Data or Contact

• the spot welds surfaces can join separated surfaces in a way that does not impede
global model rotation and does not require gap removal.

• the spot weld surfaces can be given a finite stiffness which can be tuned to the
stiffness of an adhesive, or tuned based on experimental data.

465

9.5. Moving MPCs

Sierra/SD supports moving contact through the use of moving MPCs. This can be
enabled using the solution parameter nUpdateConstraints = 1 as shown in 3.3. There are
several other recommended parameters to be used with moving contact. These will be
described in this section.

The example input blocks below show how the moving MPCs may be enabled. The
predictorCorrector is set to 0 within the transient block. In the Parameters block, the
solver should be set to update constraints without updating the matrices by setting
solverReset = constraints. There is an inexpensive preconditioner for acoustic
problems with moving constraints. To select this preconditioner, set the
preconditioner_type, krylov_method, orthog, and max_numterm_C1 as shown in the
example input deck below. The final two parameters in the GDSW block enable the block
diagonal preconditioner with block size defined by the element condition number. To make
a more powerful, but also more expensive, preconditioner increase the
max_element_condition.

solution
solver GDSW
transient

time_step 1.e-4
nsteps 100
nUpdateConstraints = 1
predictorCorrector = 0

end

parameters
solverReset = constraints

end

GDSW
preconditioner_type DIAG
krylov_method PCG
orthog 0
max_numterm_C1 0
identify_low_quality_elements true
max_element_condition 5

end

466

10. Example Input Decks

Example input decks are shown for several types of analyses. The input deck is
case-insensitive except for special cases such as file names,

10.1. Eigenvalue problem

The following input deck will output the first four mode shapes to an Exodus output file
name hexplate-out.exo. A results file, hexplate.rslt, will not be created since no results have
been selected for output in the echo section.

Solution
eigen
nmodes 4
title ’Mode Shapes of Lowest Frequency Modes’

end
FILE // finite element mesh
geometry_file hexplate.exo

end
Boundary
nodeset 77
fixed

end
Outputs
deform

end
Block 44 // The default is the Hex8b
material 3
hex8

end
Material 3
name "steel"
E 30e6 +/- 1 %
nu .3
density 0.288

end
Sensitivity
values all

end

10.2. Anisotropic Material

The following input deck is an example of a hexahedron mesh with anisotropic properties.

467

Solution
eigen
title ’Anisotropic Format’

end

file
geometry_file mesh.exo

end

Boundary
nodeset 4 y = 0
nodeset 5 x = 0
nodeset 6 z = 0

end

load
// sum of forces on surface should be equal to area
// imposed forces are additive
nodeset 1 force = 0.0 0.083333 0.0
nodeset 2 force = 0.0 -0.041666 0.0
nodeset 3 force = 0.0 -0.020833 0.0

end
outputs

deform
end

block 1
hex8
material my_material

end

Material my_material
anisotropic
Cij
1.346 0.5769 0.5769 0 0 0

1.346 0.5769 0 0 0
1.346 0 0 0

0.3846 0 0
0.3846 0

0.3846
density 1

end

468

10.3. Multiple materials

The next example shows the input for an Exodus model with many element blocks and
materials. Keyword lumped in the Solution section selects a lumped (nearly diagonal)
mass matrix.

Solution
eigen
nmodes 1
title ’Dozen blocks and six materials’
lumped

end
file

geometry_file multi.exo
end
Boundary

nodeset 1
fixed
nodeset 3
x = 0
y = 0
z = 0
RotY = 0
RotZ = 0

end
outputs

deform
end

// A block is required for each element block
block 1 //in the input Exodus (Genesis) mesh database.

material 2
Beam2

end
block 101

integration full
wedge6
material 1

end
block 2

material 2
end
block 102

integration full
wedge6

469

material 2
end
block 3

material 3
end
block 103

integration full
wedge6
material 3

end
block 4

material 4
end
block 104

integration full
wedge6
material 4

end
block 5 // Tip. Not capitalizing "material" here

material 5 // helps to distinguish it
end // from a Material section.
block 105

wedge6
integration full
material 5

end
block 6

material 6
end
block 106

wedge6
integration full
material 6

end // Each material referenced in a necessary block
Material 1 // must be defined here. Extra materials are ignored.

name "Phenolic"
E 10.5E5
nu .3
density 129.5e-6

end
Material 2

name ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6

470

end
Material 3

name ’foam’
E 100.
nu 0.3
density 18.13e-6

end
Material 4

name ’HE’
E 5E5
nu 0.45
density 129.5e-6

end // Tip. Capitializing material helps to
Material 5 // distinguish it from a material in a block.

name ’Uranium’
E 30e6
nu 0.3
density 1768.97e-6

end
Material 6

name ’wood’
E 200.e3
nu .3
density 77.7e-6

end

10.4. Modaltransient

The next example shows the input for a modaltransient analysis. Accelerations are
output to an Exodus file bar-out.exo. This example has damping, polynomial and linear
functions. Also, sensitivities are calculated.

Solution
modaltransient
nmodes 10
time_step .000005
nsteps 100
nskip 1
title ’Test modal transient on prismatic bar’

end

file
geometry_file bar.exo

end

471

outputs
acceleration

end

Boundary
nodeset 1

fixed
end

damping
gamma 0.001

end

block 1
material 1

end

Material 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

end

load
nodeset 3

force = 1. 1. 1.
function = 3

end

function 1
type linear
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

end

function 3
type linear
name "white noise"
data 0.0 1.0
data 0.0001 1.0

472

data 0.0001 0.0
data 1.0 0.0

end

10.5. ModalFrf

In this ModalFrf analysis, accelerations are output to an Exodus file bar-out.frq.

Solution
ModalFrf
nmodes 10
title ’Test ModalFrf on prismatic bar’

end

file
geometry_file bar.exo

end

frequency
freq_min 0
freq_step=10
freq_max=3000
nodeset 3
disp

end

outputs
acceleration

end

Boundary
nodeset 1
fixed

end

damping
gamma 0.001

end

block 1
material 1

end

473

Material 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

end

load
nodeset 3

force = 1. 1. 1.
function = 3

end

function 2
// a smooth pulse of duration .05 sec
// peaking near t=.02 sec at 0.945
type polynomial
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

end

function 3
type linear
name "white noise"
data 0.0 1.0
data 10000. 1.0

end

10.6. Directfrf

A directfrf is run with displacements output to the Exodus file bar-out.frq.

Solution
directfrf

end

frequency
freq_min = 1000.0
freq_step = 7000
freq_max = 5.0e4
disp

474

block 1
end

file
geometry_file bar.exo

end

outputs
disp
end

Boundary
nodeset 1

fixed
end

block 1
material 1

end

Material 1
name "aluminum"
G 0.8E+9
K 4.8E+9
density 2.59e-4

end

load
sideset 1
pressure = -1.0
function=3

end

function 3
type linear
name "white noise"
data 0.0 1.0
data 10000. 1.0

end

10.7. Statics

The following example is a statics analysis which will output stresses to the Exodus
output file quadt-out.exo.

475

Solution
statics
title ’10x1 beam of quadt’

end
file

geometry_file quadt.exo
end
Boundary

nodeset 1
fixed

end
loads

nodeset 2
force = 1000.0 1000.0 0.0

end
outputs

stress
end
block 1

material 1
QuadT

end
Material 1

name "steel"
E 30.0e6
nu 0.25e0
density 0.7324e-3

end

476

BIBLIOGRAPHY

[1] J. L. Aklonis and W. L. MacKnight. “Introduction to Polymer Viscoelasticity”. In:
Wiley, 1983. Chap. 1-6, pp. 1–316 (cit. on p. 230).

[2] D. J. Allman. “A Compatible Triangular Element Including Vertex Rotations for
Plane Elasticity Problems”. In: Comput. and Struct. 19.1-2 (1996), pp. 1–8 (cit. on
pp. 265, 438).

[3] Kenneth F. Alvin. “Implementation of Modal Damping in a Direct Implicit Transient
Algorithm”. In: Presented at the 42nd AIAA/ASME/ASCE/AHS/ASC SDM. Apr.
2001, p. 1589 (cit. on p. 253).

[4] Kenneth F. Alvin et al. “Incorporation of Sensitivity Analysis into a Scalable
Massively Parallel Structural Dynamics FEM code”. In: Presented at the 5th U.S.
Congress on Computational Mechanics. Boulder, CO, Aug. 1999 (cit. on p. 86).

[5] ATA Engineering. Attune User’s Guide. url: http://www.ata-
e.com/software/attune/Attune%5C_Users%5C_Guide%5C_v2/index.html (cit. on
p. 83).

[6] Philip Avery, Charbel Farhat, and Garth Reese. “Fast Frequency Sweep
Computations Using a Multi-point Pade-Based Reconstruction Method and an
Efficient Krylov Solver”. In: Int. J. Numer. Meth. Engng. 69.13 (Sept. 2006),
pp. 2848–2875 (cit. on p. 150).

[7] C. G. Baker et al. “Anasazi Software for the Numerical Solution of Large-Scale
Eigenvalue Problems”. In: ACM Trans. on Math. Software 36.3 (2009), pp. 1–23
(cit. on p. 156).

[8] Jean-Louis Batoz, Klaus-Jurgen Bathe, and Lee-Wing Ho. “A Study of Three-Node
Triangular Plate Bending Elements”. In: Int. J. Numer. Meth. Engng. 15 (1980),
pp. 1771–1812 (cit. on pp. 265, 438).

[9] T. Belytschko, CS Tsay, and WK Liu. “A stabilization matrix for the bilinear
Mindlin plate element”. In: Computer Meth. in Appl. Mech. Eng. 29.3 (1981),
pp. 313–327 (cit. on p. 263).

[10] J-P Berenger. “Perfectly Matched Layer for the FDTD solution of wave-structure
interaction problems”. In: Antennas and Propagation, IEEE Transactions on 44.1
(1996), pp. 110–117 (cit. on p. 346).

[11] A Bermúdez, L Hervella-Nieto, A Prieto, et al. “An optimal Perfectly Matched Layer
with unbounded absorbing function for time-harmonic acoustic scattering problems”.
In: Journal of Computational Physics 223.2 (2007), pp. 469–488 (cit. on pp. 346, 347).

477

http://www.ata-e.com/software/attune/Attune%5C_Users%5C_Guide%5C_v2/index.html
http://www.ata-e.com/software/attune/Attune%5C_Users%5C_Guide%5C_v2/index.html

[12] Matthew R. W. Brake. A Reduced Iwan Model that Includes Pinning for Bolted Joint
Mechanics. Tech. rep. SAND 2016-0207C. Sandia National Laboratories, 2016 (cit. on
p. 300).

[13] Gregory Bunting. Strong and Weak Scaling of the Sierra/SD Eigenvector Problem to
a Billion Degrees of Freedom. Tech. rep. SAND 2019-1217. Sandia National
Laboratories, 2019 (cit. on p. 23).

[14] Gregory Bunting et al. “Parallel Ellipsoidal Perfectly Matched Layers for Acoustic
Helmholtz Problems on Exterior Domains”. In: Journal of Computational Acoustics
(2018) (cit. on p. 346).

[15] M. Christon. “The influence of the mass matrix on the dispersive nature of the
semi-discrete, second-order wave equation”. In: Computer Meth. in Appl. Mech. Eng.
173.1 (1999), pp. 147–166 (cit. on p. 62).

[16] J. Chung and G. M. Hulbert. “A Time Integration Algorithm for Structural
Dynamics with Improved Numerical Dissipation - The Generalized Alpha Method”.
In: JAM 60.2 (1993), pp. 371–375 (cit. on p. 208).

[17] R. D. Cook and M. E. Plesha D. S. Malkus. Concepts and Applications of Finite
Element Analysis. 3rd. John Wiley & Sons, 1989 (cit. on pp. 208, 284).

[18] J. M. Dickens, J. M. Nagawa, and M. J. Wittbrodt. “A critique of mode acceleration
and modal truncation augmentation methods for modal response analysis”. In:
Comput. and Struct. 62.6 (1997), pp. 985–998 (cit. on pp. 212, 213).

[19] Clark R. Dohrmann and Olof B. Widlund. “Hybrid domain decomposition algorithms
for compressible and almost incompressible elasticity”. In: Int. J. Numer. Meth.
Engng. 82 (2010), pp. 157–183 (cit. on p. 61).

[20] U. S. FAA. MIL-HDBK-5J. Metallic Materials and Elements for Aerospace Vehicle
Structures. Tech. rep. Department of Defence, 2003 (cit. on pp. 234–237).

[21] Charbel Farhat, Crivelli, and M. Géradin. “Implicit time integration of a class of
constrained hybrid formulations - Part I: Spectral stability theory”. In: Int. J.
Numer. Meth. Engng. 41 (1998), pp. 675–696 (cit. on p. 208).

[22] C. A. Felippa. The SS8 Solid-Shell Element: Formulation and a Mathematica
Implementation. Tech. rep. CU-CAS-02-03. Univ. Colo. at Boulder, 2002 (cit. on
p. 272).

[23] J. D. Ferry. “Viscoelastic Properties of Polymers”. In: Wiley, 1980. Chap. 1-19,
pp. 1–590 (cit. on p. 230).

[24] F. Fuentes et al. “Orientation embedded high order shape functions for the exact
sequence elements of all shapes”. In: Computers and Mathematics with Applications
70.1 (2015), pp. 353–458 (cit. on p. 2).

[25] Gregory D. Sjaardema. A Collection of Exodus Utilities: Exodiff, Epu, Ejoin, and
Conjoin. Tech. rep. SAND2011-5715. PO Box 5800, Albuquerque, NM 87185-5800:
Sandia National Laboratories, 2011 (cit. on pp. 25, 26).

478

[26] M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998
(cit. on p. 229).

[27] Thomas J. R. Hughes. The Finite Element Method–Linear Static and Dynamic Finite
Element Analysis. Prentice-Hall, Inc, 1987 (cit. on pp. 192, 208).

[28] G. M. Hulbert and T. J. R. Hughes. “An error analysis of truncated starting
conditions in step-by-step time integration: Consequences for structural dynamics”.
In: Earthquake Engineering & Structural Dynamics 15.7 (1987), pp. 901–910 (cit. on
pp. 51, 209).

[29] A. Ibrahimbegovic and E. L. Wilson. “A Modified Method of Incompatible Modes”.
In: Communications in Applied Numerical Methods 7 (1991), pp. 187–194 (cit. on
p. 257).

[30] Conor D. Johnson, David A. Kienholz, and Lynn C. Rogers. “Finite element
prediction of damping in beams with constrained viscoelastic layers”. In: AIAA
Journal 20.9 (1982), pp. 1284–1290 (cit. on p. 134).

[31] Kinsler et al. Fundamentals of Acoustics. John Wiley & Sons, 1982 (cit. on pp. 188,
261).

[32] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide. Philadelphia,
PA, USA: SIAM, 1998 (cit. on p. 156).

[33] R. H. MacNeal. Finite Elements: Their Design and Performance. Marcel Dekker,
1994 (cit. on p. 257).

[34] Ch Michler et al. “Improving the performance of Perfectly Matched Layers by means
of hp-adaptivity”. In: Numerical Methods for Partial Differential Equations 23.4
(2007), pp. 832–858 (cit. on p. 346).

[35] O. O. Ochoa and J. N. Reddy. Finite Element Analysis of Composite Laminates.
Kluwer Academic Publishers, 1992 (cit. on p. 263).

[36] J. T. Oden. Mechanics of Elastic Structures. 1st ed. McGraw-Hill, Inc., 1967 (cit. on
p. 282).

[37] Michael A. Puso. “A 3D mortar method for solid mechanics”. In: Int. J. Numer.
Meth. Engng. 59 (2004), pp. 315–336 (cit. on p. 51).

[38] J. N. Reddy. An Introduction to the Finite Element Method. 1st ed. McGraw Hill,
1984 (cit. on p. 263).

[39] Garth Reese, Rich Field, and Daniel J. Segalman. “A Tutorial on Design Analysis
Using von Mises Stress in Random Vibration Environments”. In: Shock and
Vibration. Digest 32.6 (2000) (cit. on p. 175).

[40] Brett A. Robertson et al. Dispersion Analysis of Acoustic Elements in Sierra/SD.
Tech. rep. SAND2014-3870P. PO Box 5800, Albuquerque, NM 87185-5800: Sandia
National Laboratories, 2006 (cit. on p. 62).

[41] S D Team. Sierra SD Example Problems Manual. Tech. rep. SAND2022-11720. PO
Box 5800, Albuquerque, NM 87185-5800: Sandia National Laboratories, 2022 (cit. on
pp. 75, 78, 140, 161, 174, 318, 319, 325, 380, 434).

479

[42] S D Team. Sierra Structural Dynamics - Theory Manual. Tech. rep.
SAND2021-12517. PO Box 5800, Albuquerque, NM 87185-5800: Sandia National
Laboratory, 2022 (cit. on pp. 63, 82, 186, 221, 245, 254, 255, 272, 276, 372, 374, 445).

[43] S D Team. Sierra Structural Dynamics Verification. Tech. rep. SAND2022-11612.
Sandia National Laboratories, 2022 (cit. on pp. 188, 196, 212, 272, 275, 324, 434).

[44] Larry A. Schoof and Victor R. Yarberry. EXODUS II: A Finite Element Data Model.
Tech. rep. SAND92-2137. PO Box 5800, Albuquerque, NM 87185-5800: Sandia
National Laboratories, 1994 (cit. on p. 36).

[45] Daniel J. Segalman. A Four-Parameter Iwan Model for Lap-Type Joints. Tech. rep.
SAND 2002-3828. Sandia National Laboratories, Nov. 2002 (cit. on p. 295).

[46] Daniel J. Segalman. An Initial Overview of Iwan Modeling for Mechanical Joints.
Tech. rep. SAND2001-0811. PO Box 5800, Albuquerque, NM 87185-5800: Sandia
National Laboratories, 2001 (cit. on p. 296).

[47] Daniel J. Segalman and Michael J. Starr. Relationships Among Certain Joint
Constitutuve Models. Tech. rep. SAND2004-4321. PO Box 5800, Albuquerque, NM
87185-5800: Sandia National Laboratories, 2004 (cit. on p. 296).

[48] Daniel J. Segalman et al. “An Efficient Method for Calculating RMS Von Mises
Stress in a Random Vibration Environment”. In: Journal of Sound and Vibration
230.2 (2000), pp. 393–410 (cit. on pp. 175, 403).

[49] Daniel J. Segalman et al. “Estimating the Probability Distribution of von Mises
Stress for Structures Undergoing Random Excitation”. In: Transactions of the ASME
122 (Jan. 2000) (cit. on p. 176).

[50] Daniel J. Segalman et al. Handbook on Dynamics of Jointed Structures. Tech. rep.
SAND2009-4164. PO Box 5800, Albuquerque, NM 87185-5800: Sandia National
Laboratories, 2009 (cit. on p. 296).

[51] R. P. Shaw and A. M. Agelastos. Guide to Using Sierra. https:
//compsim.sandia.gov/compsim/Docs/Sierra/5.6/GeneralRelease/index.html.
Accessed: 2022-05-30 (cit. on p. 23).

[52] Sierra Inverse Methods Development Team. Inverse Methods User’s Manual.
Tech. rep. SAND2022-5443. PO Box 5800, Albuquerque, NM 87185-5800: Sandia
National Laboratories, 2022 (cit. on p. 222).

[53] Gregory D. Sjaardema. APREPRO: An Algebraic Preprocessor for Parameterizing
Finite Element Analyses. Tech. rep. SAND92-2291. Sandia National Laboratories,
1992 (cit. on pp. 22, 35, 36).

[54] Gregory D. Sjaardema. GROPE: A GENESIS/EXODUS Database Examination
Program. Tech. rep. SAND92-2289. Sandia National Laboratories, 1992 (cit. on p. 26).

[55] Gregory D. Sjaardema. SEACAS Assemblies Wiki. url:
https://github.com/gsjaardema/seacas/wiki/Assemblies (cit. on pp. 15, 38).

[56] C. J. Stimpson et al. Verdict Library Reference Manual. Tech. rep. SAND2007-2853P.
Sandia National Laboratories, 2007 (cit. on p. 394).

480

https://compsim.sandia.gov/compsim/Docs/Sierra/5.6/GeneralRelease/index.html
https://compsim.sandia.gov/compsim/Docs/Sierra/5.6/GeneralRelease/index.html
https://github.com/gsjaardema/seacas/wiki/Assemblies

[57] G. Strang and G. Fix. An Analysis of the Finite Element Method.
Wellesley-Cambridge Press, 2008. isbn: 9780980232707. url:
https://books.google.com/books?id=K5MAOwAACAAJ (cit. on p. 30).

[58] R. L. Taylor, P. J. Beresford, and E. L. Wilson. “A Non-conforming Element for
Stress Analysis”. In: Int. J. Numer. Meth. Engng. 10 (1976), pp. 1211–1219 (cit. on
p. 257).

[59] S D Team. SD Design Manual. Tech. rep. SAND2021-4312. Sandia National
Laboratories, 2021 (cit. on p. 434).

[60] S M Team. Sierra Solid Mechanics 4.56 User’s Guide. Tech. rep. SAND2020-5362.
PO Box 5800, Albuquerque, NM 87185-5800: Sandia National Laboratories, 2020
(cit. on pp. 20, 228, 450, 453, 462).

[61] Sierra Toolkit Development Team. Sierra Toolkit Manual Version 5.1.4. Tech. rep.
SAND2018-2856. PO Box 5800, Albuquerque, NM 87185-5800: Sandia National
Laboratories, 2018 (cit. on pp. 24, 104).

[62] D. Thompson, P. P. Pébay, and J. N. Jortner. An Exodus II Specification for
Handling Gauss Points. Tech. rep. SAND2007-7169. Sandia National Laboratories,
2007 (cit. on pp. 211, 401).

[63] T. F. Walsh et al. “Finite element methods for structural acoustics on mismatched
meshes”. In: Journal of Computational Acoustics 17.3 (2009), pp. 247–275 (cit. on
p. 445).

[64] Timothy F. Walsh, Garth M. Reese, and Ulrich L. Hetmaniuk. “Explicit A Posteriori
Error Estimates for Eigenvalue Analysis of Heterogeneous Elastic Structures”. In:
Computer Meth. in Appl. Mech. Eng. 196.37 (2007), pp. 3614–3623 (cit. on p. 405).

[65] Malcolm L Williams, Robert F Landel, and John D Ferry. “The temperature
dependence of relaxation mechanisms in amorphous polymers and other
glass-forming liquids”. In: Journal of the American Chemical society 77.14 (1955),
pp. 3701–3707 (cit. on p. 230).

[66] Paul H. Wirsching and Mark C. Light. “Fatigue under wide band random stresses”.
In: Journal of the Structural Division, ASCE 106.7 (1980), pp. 1593–1607 (cit. on
p. 174).

[67] Paul H. Wirsching, Thomas L. Paez, and Keith Ortiz. Random Vibrations: Theory
and Practice. Courier Corporation, 2006 (cit. on pp. 174, 234).

481

https://books.google.com/books?id=K5MAOwAACAAJ

This page intentionally left blank.

482

INDEX

acoustic
dispersion, 62
p0, 339
Pdot, 339
point source, 361
scale, 362

acoustic_accel, 358, 361–363
acoustic_vel, 358, 361–363
AcousticFraction, 188
acousticHydrostatic, 414
acousticIncident, 414
acousticlighthill, 363
adiag, 418
aeigen, 156

anverbosity, 157
eig_tol, 156
shift, 156

AllowExodusDistFacts, 358
AllStructural, 51
analysis_direction, 148
Anasazi, 156, 171, 182
angular_acceleration, 377
angular_velocity, 377
anisotropic, 224–226

example, 467
APartVel, 414
APressure, 414
ARPACK, 154
auto, 57, 59
average, 330

Beam2, 276, 278, 280, 282, 284
begin-periodic, 348
bending_factor, 266
block, 34, 229, 244, 305, 314, 322, 357,

442
blkalpha, 248–251
blkbeta, 248–251

coordinate, 248
density_scale_factor, 248
non-structural mass, 249
nonlinear, 248
NSM, 249
nsm, 248
parameters, 247
stiffness_scale_factor, 248

block_energies, 404
blockwise density scaling, 250
boundary, 175, 334, 346, 347, 361

fixed, 335
infinite element, 343
displacement1, 345
FieldTime, 345

P, 335
RotX, 335
RotY, 335
RotZ, 335
slosh, 343
V, 338
X, 335
Y, 335
Z, 335

buckling, 161
nmodes, 161
shift, 161

case, 132
CBModel, 136, 138, 139

file, 139
finite_difference, 144
format, 139, 323
GlobalSolution, 139
inertia_matrix, 139
netcdf, 140
nodeset, 139
OTM, 141

483

OTME, 141
OutElemMap, 141
OutMap, 141
sensitivity_method, 144
sideset, 139
spoint_offset, 140

CBR see Craig-Bampton reduction, 136
ceigen, 171, 182, 186, 232, 396
centrifugal, 376
centripetal, 376
Cij, 226, 242
CMS see component mode synthesis,

136
command line

Aprepro, 22
beta, 22

complex load, 375
component mode synthesis, 136
compute global, 423
compute nodal, 424
con_tolerance, 32
condition_limit, 46

ElemQualChecks, 46
ConMass, 285
ConMassA, 286
consistent loads, 369
constrain_rbms, 380
constraint formulation, 455
constraint_info, 221, 415
ConstraintCorrectionFrequency, 208
ConstraintErrorDiagnostics, 208
constraintmethod

Lagrange, 63
contact

normal, 446
contact definition, 19, 220, 450

Dash, 450
element quality, 456
friction model, 455
gap removal, 456
gap_removal, 220
initial overlap removal, 220
interaction, 454
interaction defaults, 454
side, 456

surfaces, 456
coordinate, 87, 244, 250, 266, 269, 272,

357, 377, 430
copy, 48
Coriolis, 376
Craig-Bampton reduction, 136, 136, 321,

322
correction=vectors, 137
inertia tensor, 138
mass inertia matrix, 138
null space correction, 137
RbmDof, 137

cutoff variable, 453

damper, 255, 290, 302
cubic, 302
viscous, 290

damping, 175, 251
block, 248
CJdamp, 134, 241
CJetaFunction, 135, 241
Conor Johnson, 134
ratiofun, 253

dashpot, 290, 302
database name, 390, 431, 433
dd_solver_output_file, 71
DDAM

analysis_direction, 146
athwartship, 146
fore_and_aft, 146
vertical, 146

preddam, 145
load, 145
modalfilter, 145

ddamout, 147, 418, 420
dead, 323
defaultSpecificHeat, 49
density, 233

blockwise scaling, 250
density_scale_factor, 250
diagnostics, 28

adiag, 418
beams, 417
cubit, 29
epu, 30

484

explore, 28
kdiag, 31, 416
stk_balance, 29

dielectric, 243
directfrf, 149, 169, 345

example, 474
displacement, 345, 410

prescribed, 337
DMIG, 319, 321, 323

echo, 40, 176, 180, 221, 270, 322, 403, 404,
416, 430, 440, 442, 467

Elmat, 444
GEnergies, 403
mass=block, 442
massblock, 442
material, 444
memusage, 444
modal amplitude, 443
MPC, 221, 443
NLresiduals, 441
subdomains, 40

eforce, 306, 408, 410, 440
eig_tol, 30, 151, 184
eigen, 44, 132, 151, 154, 156, 157, 163,

169, 174, 175, 180, 408
example, 467
fluidloading, 155
nmodes all, 151
untilfreq, 154

eigenvalue problem
comparison, 181
eigen_norm, 49
element checks, 393
Largest_Ev, 158
normalization, 49
quadratic, 186, 189
structural acoustics, 186
structural acoustics (modal basis),

189
tolerance, 44

elastic-plastic see eplas element, 301
elastic_strain, 397
ElemEigChecks, 393
element

Beam2, 276
ConMass, 285
dashpot, 290
dead, 323
eigenvalue checks, 393
eplas, 301
force, 408
Ftruss, 284
Gap, 306
Joint2G, 301

Gap2D, 309
GasDmp, 310
Hex20, 258
Hex8, 257
HexShell, 272
Hys, 292
dmax, 292
fmax, 292
kmax, 292
kmin, 292

Hysteresis element, 292
Joint2G
Iwan, 294
Property, 295, 301–303

line_weld, 303, 305
gap removal, 303

line_weld_force_rst, 306
line_weld_moment_rst, 306
Nbeam, 280
Nmount, 311
nquad, 263
ntria, 263
offset shell, 270
orientation, 413
Quad8T, 259
QuadM, 261
QuadT, 259
Rigid
Rbar, 314
RBE2, 315
RBE3, 316
Rrod, 314

RSpring, 288
Spring, 287
Spring3, 289

485

SpringDashpot, 291
Stress/Strain, 436
Superelement, 318
Tet10, 259
Tet4, 259
TiBeam, 284
Tria3, 265
Tria6, 259
TriaShell, 265
Truss, 284
Truth Table, 436
Wedge15, 258
Wedge6, 258

ElemQualChecks
condition_limit, 394
limitations, 30

energy_exo_var, 47, 367, 369
energy_load, 360, 369
energy_time_step, 47, 369
enforced acceleration

random vibration, 382
engineering units, 43
eorient, 272, 399, 413, 438
Euler force, 376
evaluate expression

in Function
examples of, 104
rules and options for composing,
104

Exodus
assemblies, 38
creation, 39

entity types, 38
naming
limitations, 39

Exodus Read Functions, 371

Farhat, Charbel, 1
fatigue, 159, 174

material, 233
S-N curve, 234

Fatigue Solution, 158
Felippa, Carlos, 2
fiber_orientation, 268
FilterRbm, 253

FilterRBMLoad, 67
FilterRbmLoad, 20, 48, 51, 215, 380
flush, 4, 53, 56
flush=N, 4
force, 218

constraint force, 407
reaction force, 407

free_surface_point, 414
frequency, 403, 408, 410, 424, 434
FRF, 408, 410
from, 55, 58
Ftruss, 284, 285
fuego, 48
function, 96, 96, 126, 149, 175, 218, 338,

353, 362, 382
blended, 120
exo_var, 352–354
ExodusRead, 354
linear, 97
loglog, 100
offset, 96
Piecewise Linear, 99
planar step wave, 115
plane wave, 112
K0, 112, 115
tied data, 112

plane_wave_freq, 113
polynomial, 100
random, 102, 352, 353
interp, 102

ReadNodal, 352, 364
interp, 352

ReadNodalSet, 353
ReadSurface, 353, 364
velX, 353
velY, 353
velZ, 353

SamplingRandom, 101
shift, 96
SpatialBC, 351
spherical_wave, 115
table, 99, 125
datafile, 125
dataline, 125
delta, 125, 376

486

dimension, 125
origin, 125, 376
size, 125

tablename, 100
undex loads, 117
wet surface pressure, 119

Gap, 301
ellipsoidal, 309

Gap element, 301, 306, 309, 310
Gap2D, 309, 309, 310
GasDmp, 311
GDSW, 63, 71, 380

constrain_rbms, 67
p, 67
rotx, 67
roty, 67
rotz, 67
x, 67
y, 67
z, 67

options, 61
Parameters, 63
prt_debug, 44, 76, 78
solver_options, 70
solver_tol, 52
SuperLUDist, 64, 70, 75

general contact, 455
Generalized Alpha, 208

rho, 208
geometry_file, 37, 37, 202
global variables, 412
globalHist, 431
grepos, 217

hand-off, 227, 350, 355, 450
Hex20, 258
Hex8, 257, 258
Hex8b, 257
Hex8F, 258
Hex8u, 257
HexShell, 272, 273

autolayers, 272
Mass, 276

history, 180

hydrostatic balance, 216
hydrostatic_gravity, 414

I1, 278
I2, 278
iforce, 375
ignore_gap_inversion, 51
igravity, 375
ImagRelDispGxx, 410
ImagRelDispGyy, 411
ImagRelDispGzz, 411
imoment, 375
impedance_pressure, 342
impedance_shear, 342
info, 44
initial overlap, 220
initial-conditions, 383

time, 384
velX, 383
velY, 383
velZ, 383

input
acceleration, 339
Aprepro, 22, 36
comment
entire section, 35

comments, 34
end, 34

input see hand-off, 34
interaction behavior, 456
interpolation, 48
ipressure, 375
isotropic, 224, 225
isotropic_viscoelastic, 224
isotropic_viscoelastic_complex, 232
itraction, 375
Iwan, 255, 297

Joing2G
force, 408

Joint2G, 294, 301, 303, 317, 329, 333
Property, 295, 301
relative_disp, 410

keepmodes, 174
krylov_solver_output_file, 71

487

layer, 268
left_stretch, 227
lfcutoff, 174
Lighthill, 361, 363
linesample, 210, 345, 346, 434
LineWeld see Element, 303
load, 112, 133, 175, 207, 218, 357, 357,

358, 371, 382
body, 357
complex, 375
consistent, 369
electrostatic, 370
follower, 358
follower stiffness, 361
function, 371
randompressure, 371
scale, 371
spatially-dependent, 351–353
statics, 370
transient, 371

loads, 114, 133, 161, 175, 338, 339, 356,
356, 358, 361, 379, 382

Lumped see mass matrix lumping, 62

mass, 442
blockwise properties, 442
properties, 442

mass matrix lumping, 62, 265, 271, 469
material, 224, 227

Lamé, 227
begin-lame-material, 227
end-lame-material, 227
lame_state_hyperfoam, 227

acoustic, 228
anisotropic, 226
complexViscoelastic, 232
Gim, 232
Greal, 232
Kim, 232
Kreal, 232

density, 233
E, 225
example, 469
exodus mesh properties, 239
G, 225

isotropic, 224
K, 225
layered, 265
nu, 225
orthotropic, 225
specific heat, 240
temperature dependent, 238
temperature function, 238
viscoelastic, 229

material_direction_1, 392
material_direction_2, 392
material_direction_3, 392
matrix, 382

file names, 406
output in MFile format, 406
RanLoads parameter, 382

matrix-function, 174, 175, 382
nominalt, 123
table, 123

MatrixFloor, 48
max_newton_iterations, 193
MaxmpcEntries, 49
maxRatioFlexibleRbm, 254
membrane_factor, 266
memory diagnostics, 30
Memusage, 444
mesh discretization error, 405
mesh_error, 10, 405
MFile, 405
mfile, 10
MinimumNodalSpacing, 374
mksuper, 318–320
modal acceleration, 169
modal effective mass, 165, 167

meff, 165
MPF, 165

modal_amp, 406
modalfilter, 154
modalfiltercase, 154
ModalFraction, 188
ModalFrf, 149, 168–170, 252, 473

example, 473
nrbms, 170
usemodalaccel, 170

488

modalranvib, 5, 173, 174, 175, 252, 408,
410, 411, 424

acceleration, 173
noSVD, 173
RMS von Mises stress, 173

modalshock, 178
modaltransient, 132, 179–181, 249, 252,

375, 471
example, 471

modalvars, 180, 376, 443
mortar method, 448

dual, 448
standard, 448

MPC see multipoint constraint, 49
mpmd_transfer_sidesets, 48
mpmd_transfer_type, 48
mpmd_transfer_version, 9, 48
multipoint constraint, 46, 127

constraint force, 407
constraint_correction, 49, 208
constraint_info, 415
nUpdateConstraints, 208
orthogonalization, 49
problematic, 32

N, 4
NASTRAN

auto spc, 46
output4 in CBR, 139

Nbeam, 276, 280, 280–283
NegEigen, 151
neglect_mass, 344
netcdf, 144, 321–323
new, 48
Newmark beta, 208, 209
Ng, Esmond, 2
NLstatics, 190, 193
NLtransient, 192, 193
nmodes, 137, 154, 163, 170, 174, 252
Nmount, 311, 311

stability, 312
nodal, 424
nodal_charge, 420
NodeListFile, 341, 429
nodeset, 139, 353, 357

nodesets_with_disp, 52, 208
nonlinear, 247, 250
nonlinear_default, 44, 247
normal tolerance, 455
npressure, 218, 414
nquad, 259, 263
nquad_eps_max, 264
NSC, 48
nskip, 4
ntria, 263
num_newton_load_steps, 190, 193
num_procs, 53, 58
num_rigid_mode, 51
nUpdateConstraints, 52
nUpdateDynamicMatrices, 239, 367
nUpdateTemperature, 239, 367, 368

offset shell, 270, 271
orthotropic, 224, 225, 265
orthotropic_layer, 226
orthotropic_piezoelectric, 242
orthotropic_prop, 224, 225
output

element force, 408
error metrics, 405
history, 429
coordinate, 410
nodes, 429
relative_disp, 410

Internal Variables, 429
MATLAB, 388, 435
exo2mat, 434

relative_disp, 410
spatial statistics, 420, 421
element, 420
nodal, 421

temporal statistics, 426
user output, 420
Analytic Functions, 427
closest distance, 423
spatial statistics, 420, 421
temporal statistics, 426

output_sideset_data, 41
outputs, 46, 140, 149, 159, 170, 176, 180,

221, 305, 322, 363, 387, 387, 388,

489

390, 403, 404, 408, 410, 411, 413,
414, 416, 418, 424, 429

acceleration, 397
constraint_force, 407
constraint_info, 415
coordinate, 410
disp, 396
energy, 403
faa, 392
force, 407
GEnergies, 403
work, 403

Globals, 404
history, 140
Kaa, 392
line_weld, 410
Maa, 392
material, 392
MATLAB, 25, 142, 144, 166, 180, 211,

345, 443
MFile_Format, 50

MLumped, 392
MPhi, 393
reaction_force, 407
RHS, 408
RMS, 403
rotational_acceleration, 403
rotational_displacement, 403
strain, 397
stress, 398
velocity, 397
von Mises stress, 400

overlap removal see Gap Removal, 220

Padé, 150
parallel computing, 26

epu, 25, 26
exodus_file, 25

Parameters, 394–396
parameters, 41, 41, 64, 65, 210, 314, 366,

367, 380, 448
info, 44
negeigen, 41
reorder_Rbar, 46
reserved_keywords, 45

syntax_checking, 45
wtmass, 41

Perfectly Matched Layer, 346
performance, 23, 27, 63, 127
periodic boundary conditions, 348
permittivity_ij, 242
piezoelectric, 221

e_ij, 242
plane_wave, 115
PML see Perfectly Matched Layer, 346
point_volume_accel, 361–364
point_volume_acceleration, 15, 354
point_volume_vel, 361–364
point_volume_velocity, 354
power spectral density, 176, 383

acceleration, 176
coordinate, 176
displacement, 176
scaling, 382

Preddam, 154
PredictorCorrector, 208
prescribed acceleration, 339

accelX, 339
accelY, 339
accelZ, 339
disp0, 339
RotaccelX, 339
RotaccelY, 339
RotaccelZ, 339
vel0, 339

prescribed displacement, 339
prescribed frequency, 340

DispX, 340
DispY, 340
DispZ, 340
FreqP, 340
FreqV, 340
RotDispX, 340
RotDispY, 340
RotDispZ, 340

pressure, 358, 362, 413
depth dependent, 369
nodal, 414
prescribed, 337

pressure_z, 369

490

Problematic Elements, 31
Problematic Subdomains, 30
projection_eigen, 182, 183, 189
property, 295, 301–303, 390
PSD see power spectral density, 176

qevp, 169, 171, 181–184, 186, 188
Quad8T, 259, 259, 260
QuadM, 261, 261
quadm, 259
QuadT, 259, 259, 260
quadt, 259

Random Number Generator, 50
Random Vibration, 193
Random Vibration see Modal Random

Vibration, 173
RandomPressure, 371
RanLoads, 175, 381, 381, 382

acceleration, 381
dimension, 381

rational function, 150
Rbar, 314, 315, 316

reorder_Rbar, 46
RBE2, 315, 315
RBE3, 316, 317

refc, 316
RbmTolerance, 48
Reduced Iwan, 301
relative_disp, 19, 410, 411
reorthogonalization, 171
reserved_keywords, 40, 45
residual, 411

global var, 412
nonlinear norm, 441
vector, 411, 441

residual work, 411
residual_vectors, 212

nrbms, 213
restart, 53

auto, 53
database name, 53
from, 53
num_procs, 53
read, 53

restart_consistency_checking, 46
solution support, 60

restart_consistency_checking, 45
rigid, 330

rigidset, 324, 327
Joint2G, 325
limitations, 326
nodeset, 325
sideset, 325
tied joint, 325
voltage, 325

Rrodset, 327
rigid body filter, 380
RMS, 173, 403
Rod see Truss, 284
rotational frames, 376
rotational_acceleration, 176, 177
rotational_displacement, 176, 177
rotational_type, 248
Rrod, 314, 330

Rrodset, 326
RSpring, 287, 288, 288

sa_eigen, 171, 182, 183, 186
ErrorNorm, 188
limitations, 186

Salinas, 21
scattering, 63
sd_factor, 257, 262
Section Commands

Loads Rigid Body Filter, 380
block, 244
block parameters, 244
boundary, 334
coordinate, 87
damping, 251
echo, 440
file, 37, 387
frequency, 113, 433
function, 96
history, 429
Load, 357
loads, 356
material, 224
matrix-function, 123

491

outputs, 387
parameters, 41
periodic boundary conditions, 348
RanLoads, 381
Rrodset, 326
sensitivity, 82
solution, 130
solver_options, 70
table, 125
tied surfaces, 445
user output, 420
Analytic Functions, 427
closest distance, 423
element variable spatial statistics,
420

nodal variable statistics, 421
temporal variable statistics, 426

self contact, 455
sensitivity, 82, 85, 144, 471

+/-, 83
Attune, 83
iterations, 82
tolerance, 82
values, 82
vectors, 82

sensitivity_param, 322
shear_axis, 295
shells

offset, 270
shift, 153, 162
sideset, 139, 272, 354, 357, 358
SkipmpcTouch, 46
smoothing parameters, 450
Solution, 34, 52, 62, 63, 130, 130, 132,

153, 162, 175, 191, 201, 218, 469
AEigen, 156
Buckling, 161
ceigen, 184
CJdamp, 134
complex eigen, 184
Craig-Bampton reduction, 136
DDAM, 146
DirectFRF, 149
Eigen, 151
Fatigue, 158

Gap Removal, 220
elementInversionFlag, 221
elementQuality, 221

GeometricRigidBodyModes, 20, 214
Largest_Ev, 157
Modal Participation Factor, 165
ModalFilter, 163
write_files, 163, 165

ModalFrf, 168
ModalRanVib, 173
ModalShock, 178
ModalTransient, 179
Model_Check, 150
MPF, 166
NLStatics, 190
NLTransient, 192
Options, 52
constraint method, 63
GDSW, 61
mass matrix lumping, 62
restart, 53
scattering, 63
symmetrize_struc_acous, 63
Table, 133

preddam, 145
QEVP, 181
Random Vibration, 193
Receive_Sierra_Data, 194
receive_sierra_data, 132, 194, 200,

233
include_internal_force, 195
no_geom_stiff, 195

Residual Vectors, 212
Statics, 201
Superposition, 201
Tangent, 203
TranShock, 204
srs_damp, 204

Transient, 206
TSR_preload, 210
Waterline, 216

solver
parameters, 63

solver_options, 70
sparc, 48

492

spherical_wave, 115
Spring, 287, 287, 288

cubic, 289
Linear, 287
Parameter Values, 287
Rotational, 288

Spring3, 289
SpringDashpot, 291, 291
statics, 201, 365, 408

example, 475
statistics, 415, 416

min/max, 415
standard deviation, 415

stiffness_scale_factor, 251
strain, 397

Gauss point, 398
stress, 10, 176, 227, 439

Gauss point, 401
Stress and Strain Recovery, 435
stress recovery point, 439
Structural Acoustics

eigen, 186, 189
StructuralFraction, 188
subdomain

output, 443
Superelement, 142
SuperLU, 2
superposition, 201, 202
surface

description of, 38
surface_charge, 370
symmetrize_struc_acous, 63
syntax_checking, 45

tangent, 132, 133, 203, 378
Tangential Tolerance, 455
TangentMethod, 44
tcoord, 272, 273
Temperature, 420
Tet10, 259, 259
Tet4, 259, 259
thermal_exo_var, 47, 366, 367, 369
thermal_load, 47, 360, 364–368
thermal_strain, 397
thermal_time_step, 47, 239, 367–369

TiBeam, 284
tied data, 220, 445

gap_removal, 32, 220
initial overlap removal, 220
transverse, 445

tied joint
normal, 328
shear_axis, 329
side, 329
slip, 329
surface, 328

tied surface, 445
gap removal, 445

TIndex, 412
tolerance, 190, 192, 193
traction, 358
transfer_source_file, 37
transhock, 204
transient, 204, 206, 365, 408

nskip, 206, 431
nsteps, 206
start_time, 206
time_step, 206

Tria3, 260, 265, 265
Tria6, 259, 259, 260
TriaShell, 260, 265, 265, 438
troubleshooting, 28

cubit, 29
explore, 28

TruncationMethod, 174
Truss, 284, 284

units of measure, 41, 43
update_tangent, 191, 193, 307
user subroutine file, 37, 311

viscofreq, 184, 185
viscous damper, 290
voltage, 420

accelV, 340
transV, 340

Volume, 420
volume_acceleration, 352
von Mises, 9, 10
vrms, 403

493

waterline, 216
point_a, 216
point_b, 216
point_c, 216

Wedge15, 258

Wedge6, 258, 258
write, 57
write_files, 163, 180
wtmass, 41, 382, 442

XML, 22

494

DISTRIBUTION

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

1 K. H. Pierson 1542 0845

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

Technical Library 1911 sanddocs@sandia.gov

495

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Release Notes
	Feature deprecation procedure
	Release 5.14
	Release 5.12
	Release 5.10
	Release 5.8
	Release 5.6
	Release 5.4
	Release 5.2
	Release 5.00
	Release 4.58

	How to Run Sierra/SD
	Accessing Sierra/SD
	Modules and Executables
	The Sierra/SD salinas Executable
	MPI Parallel Execution
	Number of MPI Processes Needed
	Mesh Decomposition
	Running the Sierra/SD Executable in Parallel
	Post Processing in Parallel

	File system concerns
	Workflow Examples
	Thread Parallelism
	Troubleshooting
	Stand-Alone Tools
	Using Sierra/SD To Troubleshoot
	Modal Analysis
	Evaluating Memory Use
	Identifying Problematic Subdomains
	Limitations of SD Finite Elements
	Problematic Elements and Connectivity

	Over-determined Constraints and Loss of Rigid Body Modes

	General Commands
	Input deck format
	Input Mesh Geometry File
	Geometry_file
	Exodus Database Naming Conventions
	ASSEMBLY section
	Exodus Naming Limitations
	Additional Comments About Output

	Parameters
	Solution Options
	Flush
	Restart
	Solver
	Lumped – option
	Constraintmethod – option
	Scattering – option

	GDSW
	Options
	Diagnostics
	Troubleshooting
	Mathematical Conditioning Issues
	Frequency Response Functions
	Parameters

	Sensitivity
	Attune

	Coordinate
	Function
	Function Offset/Shifts
	Linear Functions
	Sierra SM Piecewise Linear Functions
	Functions using Tables
	Polynomials
	LogLog Functions
	SamplingRandom
	RandomLib Functions
	Analytic Functions
	Plane Wave (Time Domain)
	Plane Wave (Frequency Domain)
	Planar Step Wave
	Spherically Spreading Wave
	Undex Structural Acoustic Loads
	Fluid Structure Interaction
	Blending
	Matrix-function
	Alternate Table Interface
	Table

	Multipoint Constraints

	Solution cases
	Defining Solution Cases
	Multicase Solutions
	Multicase Options
	Multicase Example

	CJdamp Solution Case
	Craig-Bampton reduction Solution Case
	CBModel
	Sensitivity Analysis

	preddam Solution Case
	Eigen analysis notes

	DDAM Solution Case
	DirectFRF Solution Case
	Padé Expansion

	Model_Check Solution Case
	Eigen Solution Case
	Option nmodes
	Solving Singular Systems with Shifts

	AEigen Solution Case
	Largest_Ev Solution Case
	Fatigue Solution Case
	Buckling Solution Case
	ModalFilter Solution Case
	Modal Participation Factor Solution Case
	ModalFrf Solution Case
	ModalRanVib Solution Case
	ModalShock Solution Case
	ModalTransient Solution Case
	QEVP Solution Case
	Anasazi
	Damped Eigenvalue Problems
	SA_eigen
	Projection_eigen

	NLStatics Solution Case
	NLTransient Solution Case
	Random Vibration Solution Case
	Receive_Sierra_Data Solution Case
	Receiving SM User Defined Data

	Statics Solution Case
	Superposition Solution Case
	Tangent Solution Case
	TranShock Solution Case
	Transient Solution Case
	nUpdateConstraints Option

	TSR_preload Solution Case
	Residual Vectors Solution Case
	GeometricRigidBodyModes Solution Case
	Waterline Solution Case
	Gap Removal Solution Case
	Inverse Problems

	Materials
	Elastic
	Isotropic
	Orthotropic
	Anisotropic
	Lamé Material

	Acoustic
	Linear Viscoelastic
	Limitations of Viscoelastic Use
	Complex Viscoelastic

	Properties
	Density
	High Cycle Fatigue
	S-N curve Definitions
	S-N Curve Units
	Typical Material Data for Fatigue
	Temperature dependence
	Spatially Variant Material Properties
	Specific Heat
	Frequency dependence

	Piezoelectric Material
	Dielectric Material
	Block
	Block Parameters
	General Block Parameters

	Damping
	Nonlinear transient solutions with damping
	Nonlinear Distributed Damping

	Elements
	Hex8
	Hex20
	Wedge6
	Wedge15
	Tet4
	Tet10
	Two-Dimensional Shell and Membrane Elements
	QuadT, Quad8T, and Tria6
	QuadM
	Nquad/Ntria
	TriaShell
	Tria3
	Stiffness Scaling
	Shell Coordinate Systems
	Layered Shells
	Offset Shells
	Spatially Dependent Properties via Exodus Attributes

	HexShell
	Beam2
	Nbeam
	TiBeam
	Truss
	Ftruss
	ConMass
	Spring
	Spring Parameter Values

	RSpring
	Spring3 - nonlinear cubic spring
	Dashpot
	SpringDashpot
	Hys
	Joint2G
	Specification
	Constitutive Behavior

	Line Weld
	Gap element
	Gap2D
	GasDmp
	Nmount
	Rrod
	Rbar
	Interaction of Rbars

	RBE2
	RBE3
	Superelement
	Dead
	Compatibility of SD/SM Elements
	Rigidset
	Rrodset
	Tied Joint

	Boundary Conditions and Initial Conditions
	Boundary conditions
	Prescribed Displacements and Pressures
	Prescribed Voltage
	Prescribed Accelerations
	Prescribed Displacement in Transient
	Prescribed Frequency-Varying Displacements
	Node_List_File
	Nonreflecting Boundaries
	Impedance Boundary Conditions
	Slosh
	Infinite Elements
	Perfectly Matched Layers
	Periodic Boundary Conditions
	Usage Guidelines

	Exodus Mesh Boundary Condition Input
	SpatialBC Functions
	Input an Acoustic Point Source from a Volume
	Input an Acoustic Point Source from a Node Set
	ReadSurface functions
	ExodusRead functions
	In Core Transfer Functions

	Loads
	Load
	Scale Factors for the Load
	Sideset Loading
	Spatial Variation
	Required Section
	Follower Stiffness
	Acoustic Loads
	Thermal Loads
	Energy Deposition Input and Loads
	Consistent Loads
	Pressure_Z
	Surface Charge
	Static Loads
	Time Varying Loads
	Random Pressure Loads
	Frequency Dependent Loads
	Modal Force Loading
	Rotational frames
	Rigid Body Filter for Input
	RanLoads

	Initial Conditions
	Reading Initial Conditions from the Mesh File
	Setting Initial Conditions in the Input Deck

	Use cases for initial acceleration

	Output
	Exodus
	Surface Projection of Element Variables
	Database Name
	Properties
	Maa
	Material
	Material direction
	Kaa
	Faa
	MLumped
	MPhi
	ElemEigChecks
	ElemQualchecks
	Displacement
	Velocity
	Acceleration
	Strain
	Strain = GP
	Stress
	Principal Stresses
	von Mises stress
	Signed von Mises Stress
	Rainflow Cycle Counting
	Fatigue Damage
	Stress = GP
	Vrms
	Rotational_displacement
	Rotational_acceleration
	Energy
	GEnergies
	Globals
	Block_Energies
	Mesh_Error
	MFile
	Force
	Constraint force
	Reaction Force
	Right-hand side
	EForce
	Line_Weld
	Relative_Disp
	Residuals
	TIndex
	EOrient
	Pressure
	NPressure
	APressure
	acousticIncident
	acousticHydrostatic
	APartVel
	Constraint_Info
	Statistics
	KDiag
	ADiag
	ddamout
	Temperature

	User Output
	Element Variable Spatial Statistics
	Nodal Variable Spatial Statistics
	The Closest Distance
	Temporal Variable Statistics
	Analytic Function Output

	Output of Internal Variables
	History
	Global History Output Near a Location

	Frequency
	Linesample
	Stresses and Strains
	Stress/Strain Truth Table
	Solid Elements
	Shell Elements
	Beam Elements

	Echo
	Mass Properties
	Multipoint constraints
	ModalVars
	Subdomains
	Memusage

	Contact
	Tied Surfaces
	Contact Normal Vectors
	Mortar Methods
	Node to Face

	Contact Definition
	Defining Contact Surfaces
	Setting up Contact Interactions
	Gap removal
	Examples
	Notes and Usage Guidelines
	Differences Between SM and SD Defaults

	Lofted Surfaces and Gap Removal
	Example
	Projection Approach

	Spot Welds
	Syntax
	Outputs
	Specifying Spot Weld Stiffnesses
	Usage at discrete points
	Usage as an alternative to Tied Joint or Surface Contact

	Moving MPCs

	Example Input Decks
	Eigenvalue problem
	Anisotropic Material
	Multiple materials
	Modaltransient
	ModalFrf
	Directfrf
	Statics

	Bibliography
	Index

	Index

